Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | snnzb | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
2 | df-ne | ⊢ ( { 𝐴 } ≠ ∅ ↔ ¬ { 𝐴 } = ∅ ) | |
3 | 2 | con2bii | ⊢ ( { 𝐴 } = ∅ ↔ ¬ { 𝐴 } ≠ ∅ ) |
4 | 1 3 | bitri | ⊢ ( ¬ 𝐴 ∈ V ↔ ¬ { 𝐴 } ≠ ∅ ) |
5 | 4 | con4bii | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ ) |