Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snnzb | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 2 | df-ne | ⊢ ( { 𝐴 } ≠ ∅ ↔ ¬ { 𝐴 } = ∅ ) | |
| 3 | 2 | con2bii | ⊢ ( { 𝐴 } = ∅ ↔ ¬ { 𝐴 } ≠ ∅ ) | 
| 4 | 1 3 | bitri | ⊢ ( ¬ 𝐴 ∈ V ↔ ¬ { 𝐴 } ≠ ∅ ) | 
| 5 | 4 | con4bii | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ ) |