Metamath Proof Explorer


Theorem snnzb

Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018)

Ref Expression
Assertion snnzb ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
2 df-ne ( { 𝐴 } ≠ ∅ ↔ ¬ { 𝐴 } = ∅ )
3 2 con2bii ( { 𝐴 } = ∅ ↔ ¬ { 𝐴 } ≠ ∅ )
4 1 3 bitri ( ¬ 𝐴 ∈ V ↔ ¬ { 𝐴 } ≠ ∅ )
5 4 con4bii ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ )