Metamath Proof Explorer


Theorem snnzg

Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008)

Ref Expression
Assertion snnzg ( 𝐴𝑉 → { 𝐴 } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 snidg ( 𝐴𝑉𝐴 ∈ { 𝐴 } )
2 1 ne0d ( 𝐴𝑉 → { 𝐴 } ≠ ∅ )