Metamath Proof Explorer


Theorem snopeqopsnid

Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypothesis snopeqopsnid.a 𝐴 ∈ V
Assertion snopeqopsnid { ⟨ 𝐴 , 𝐴 ⟩ } = ⟨ { 𝐴 } , { 𝐴 } ⟩

Proof

Step Hyp Ref Expression
1 snopeqopsnid.a 𝐴 ∈ V
2 eqid 𝐴 = 𝐴
3 eqid { 𝐴 } = { 𝐴 }
4 1 1 snopeqop ( { ⟨ 𝐴 , 𝐴 ⟩ } = ⟨ { 𝐴 } , { 𝐴 } ⟩ ↔ ( 𝐴 = 𝐴 ∧ { 𝐴 } = { 𝐴 } ∧ { 𝐴 } = { 𝐴 } ) )
5 2 3 3 4 mpbir3an { ⟨ 𝐴 , 𝐴 ⟩ } = ⟨ { 𝐴 } , { 𝐴 } ⟩