Metamath Proof Explorer


Theorem snopsuppss

Description: The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019)

Ref Expression
Assertion snopsuppss ( { ⟨ 𝑋 , 𝑌 ⟩ } supp 𝑍 ) ⊆ { 𝑋 }

Proof

Step Hyp Ref Expression
1 suppssdm ( { ⟨ 𝑋 , 𝑌 ⟩ } supp 𝑍 ) ⊆ dom { ⟨ 𝑋 , 𝑌 ⟩ }
2 dmsnopss dom { ⟨ 𝑋 , 𝑌 ⟩ } ⊆ { 𝑋 }
3 1 2 sstri ( { ⟨ 𝑋 , 𝑌 ⟩ } supp 𝑍 ) ⊆ { 𝑋 }