Metamath Proof Explorer


Theorem snprc

Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of Quine p. 48. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )

Proof

Step Hyp Ref Expression
1 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
2 1 exbii ( ∃ 𝑥 𝑥 ∈ { 𝐴 } ↔ ∃ 𝑥 𝑥 = 𝐴 )
3 neq0 ( ¬ { 𝐴 } = ∅ ↔ ∃ 𝑥 𝑥 ∈ { 𝐴 } )
4 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
5 2 3 4 3bitr4i ( ¬ { 𝐴 } = ∅ ↔ 𝐴 ∈ V )
6 5 con1bii ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )