Metamath Proof Explorer


Theorem snriota

Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006)

Ref Expression
Assertion snriota ( ∃! 𝑥𝐴 𝜑 → { 𝑥𝐴𝜑 } = { ( 𝑥𝐴 𝜑 ) } )

Proof

Step Hyp Ref Expression
1 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
2 sniota ( ∃! 𝑥 ( 𝑥𝐴𝜑 ) → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) } )
3 1 2 sylbi ( ∃! 𝑥𝐴 𝜑 → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) } )
4 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
5 df-riota ( 𝑥𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) )
6 5 sneqi { ( 𝑥𝐴 𝜑 ) } = { ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) }
7 3 4 6 3eqtr4g ( ∃! 𝑥𝐴 𝜑 → { 𝑥𝐴𝜑 } = { ( 𝑥𝐴 𝜑 ) } )