Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | snriota | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { ( ℩ 𝑥 ∈ 𝐴 𝜑 ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | sniota | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) } ) | |
3 | 1 2 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) } ) |
4 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
5 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
6 | 5 | sneqi | ⊢ { ( ℩ 𝑥 ∈ 𝐴 𝜑 ) } = { ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) } |
7 | 3 4 6 | 3eqtr4g | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { ( ℩ 𝑥 ∈ 𝐴 𝜑 ) } ) |