Metamath Proof Explorer


Theorem snsn0non

Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson ). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj . (Contributed by NM, 21-May-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion snsn0non ¬ { { ∅ } } ∈ On

Proof

Step Hyp Ref Expression
1 snex { ∅ } ∈ V
2 1 snid { ∅ } ∈ { { ∅ } }
3 2 n0ii ¬ { { ∅ } } = ∅
4 0ex ∅ ∈ V
5 4 snid ∅ ∈ { ∅ }
6 5 n0ii ¬ { ∅ } = ∅
7 eqcom ( ∅ = { ∅ } ↔ { ∅ } = ∅ )
8 6 7 mtbir ¬ ∅ = { ∅ }
9 4 elsn ( ∅ ∈ { { ∅ } } ↔ ∅ = { ∅ } )
10 8 9 mtbir ¬ ∅ ∈ { { ∅ } }
11 3 10 pm3.2ni ¬ ( { { ∅ } } = ∅ ∨ ∅ ∈ { { ∅ } } )
12 on0eqel ( { { ∅ } } ∈ On → ( { { ∅ } } = ∅ ∨ ∅ ∈ { { ∅ } } ) )
13 11 12 mto ¬ { { ∅ } } ∈ On