Metamath Proof Explorer


Theorem snss

Description: The singleton of an element of a class is a subset of the class (inference form of snssg ). Theorem 7.4 of Quine p. 49. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis snss.1 𝐴 ∈ V
Assertion snss ( 𝐴𝐵 ↔ { 𝐴 } ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 snss.1 𝐴 ∈ V
2 snssg ( 𝐴 ∈ V → ( 𝐴𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) )
3 1 2 ax-mp ( 𝐴𝐵 ↔ { 𝐴 } ⊆ 𝐵 )