| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss | ⊢ ( { 𝐴 }  ⊆  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  { 𝐴 }  →  𝑥  ∈  𝐵 ) ) | 
						
							| 2 |  | velsn | ⊢ ( 𝑥  ∈  { 𝐴 }  ↔  𝑥  =  𝐴 ) | 
						
							| 3 | 2 | imbi1i | ⊢ ( ( 𝑥  ∈  { 𝐴 }  →  𝑥  ∈  𝐵 )  ↔  ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  { 𝐴 }  →  𝑥  ∈  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝐵  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 6 | 5 | pm5.74i | ⊢ ( ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 )  ↔  ( 𝑥  =  𝐴  →  𝐴  ∈  𝐵 ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝐴  ∈  𝐵 ) ) | 
						
							| 8 |  | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝐴  ∈  𝐵 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝐴  ∈  𝐵 ) ) | 
						
							| 9 |  | isset | ⊢ ( 𝐴  ∈  V  ↔  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 10 | 9 | bicomi | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  ↔  𝐴  ∈  V ) | 
						
							| 11 | 10 | imbi1i | ⊢ ( ( ∃ 𝑥 𝑥  =  𝐴  →  𝐴  ∈  𝐵 )  ↔  ( 𝐴  ∈  V  →  𝐴  ∈  𝐵 ) ) | 
						
							| 12 | 7 8 11 | 3bitri | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝑥  ∈  𝐵 )  ↔  ( 𝐴  ∈  V  →  𝐴  ∈  𝐵 ) ) | 
						
							| 13 | 1 4 12 | 3bitri | ⊢ ( { 𝐴 }  ⊆  𝐵  ↔  ( 𝐴  ∈  V  →  𝐴  ∈  𝐵 ) ) |