Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | snssd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| Assertion | snssd | ⊢ ( 𝜑 → { 𝐴 } ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 2 | snssi | ⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ⊆ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → { 𝐴 } ⊆ 𝐵 ) |