Description: The singleton of an element of a class is a subset of the class (general form of snss ). Theorem 7.4 of Quine p. 49. (Contributed by NM, 22-Jul-2001)
Ref | Expression | ||
---|---|---|---|
Assertion | snssg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
2 | 1 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
4 | 3 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
5 | dfss2 | ⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) | |
6 | 5 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) ) |
7 | clel2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) ) | |
8 | 4 6 7 | 3bitr4rd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) ) |