Description: Obsolete version of snssgOLD as of 1-Jan-2025. (Contributed by NM, 22-Jul-2001) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snssgOLD | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) | 
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) | 
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) ) | 
| 5 | df-ss | ⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) | |
| 6 | 5 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) ) | 
| 7 | clel2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) ) | |
| 8 | 4 6 7 | 3bitr4rd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) ) |