Metamath Proof Explorer


Theorem snsspr1

Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004)

Ref Expression
Assertion snsspr1 { 𝐴 } ⊆ { 𝐴 , 𝐵 }

Proof

Step Hyp Ref Expression
1 ssun1 { 𝐴 } ⊆ ( { 𝐴 } ∪ { 𝐵 } )
2 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
3 1 2 sseqtrri { 𝐴 } ⊆ { 𝐴 , 𝐵 }