Metamath Proof Explorer


Theorem snsspr2

Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009)

Ref Expression
Assertion snsspr2 { 𝐵 } ⊆ { 𝐴 , 𝐵 }

Proof

Step Hyp Ref Expression
1 ssun2 { 𝐵 } ⊆ ( { 𝐴 } ∪ { 𝐵 } )
2 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
3 1 2 sseqtrri { 𝐵 } ⊆ { 𝐴 , 𝐵 }