Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sneqr.1 | ⊢ 𝐴 ∈ V | |
Assertion | snsssn | ⊢ ( { 𝐴 } ⊆ { 𝐵 } → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | ⊢ 𝐴 ∈ V | |
2 | sssn | ⊢ ( { 𝐴 } ⊆ { 𝐵 } ↔ ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) ) | |
3 | 1 | snnz | ⊢ { 𝐴 } ≠ ∅ |
4 | 3 | neii | ⊢ ¬ { 𝐴 } = ∅ |
5 | 4 | pm2.21i | ⊢ ( { 𝐴 } = ∅ → 𝐴 = 𝐵 ) |
6 | 1 | sneqr | ⊢ ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) |
7 | 5 6 | jaoi | ⊢ ( ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) → 𝐴 = 𝐵 ) |
8 | 2 7 | sylbi | ⊢ ( { 𝐴 } ⊆ { 𝐵 } → 𝐴 = 𝐵 ) |