Metamath Proof Explorer


Theorem snsssn

Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006)

Ref Expression
Hypothesis sneqr.1 𝐴 ∈ V
Assertion snsssn ( { 𝐴 } ⊆ { 𝐵 } → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 sneqr.1 𝐴 ∈ V
2 sssn ( { 𝐴 } ⊆ { 𝐵 } ↔ ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) )
3 1 snnz { 𝐴 } ≠ ∅
4 3 neii ¬ { 𝐴 } = ∅
5 4 pm2.21i ( { 𝐴 } = ∅ → 𝐴 = 𝐵 )
6 1 sneqr ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 )
7 5 6 jaoi ( ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) → 𝐴 = 𝐵 )
8 2 7 sylbi ( { 𝐴 } ⊆ { 𝐵 } → 𝐴 = 𝐵 )