Metamath Proof Explorer


Theorem snsstp3

Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013)

Ref Expression
Assertion snsstp3 { 𝐶 } ⊆ { 𝐴 , 𝐵 , 𝐶 }

Proof

Step Hyp Ref Expression
1 ssun2 { 𝐶 } ⊆ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
2 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
3 1 2 sseqtrri { 𝐶 } ⊆ { 𝐴 , 𝐵 , 𝐶 }