| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 2 |
|
iccid |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
| 4 |
3
|
uneq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 7 |
1
|
xrleidd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ≤ 𝐵 ) |
| 8 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 9 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
| 10 |
|
xrlenlt |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) |
| 11 |
|
xrltle |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 ≤ 𝐵 ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 ≤ 𝐵 ) ) |
| 13 |
12
|
adantrd |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) → 𝑤 ≤ 𝐵 ) ) |
| 14 |
|
xrletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝑤 ) → 𝐴 ≤ 𝑤 ) ) |
| 15 |
8 9 10 9 13 14
|
ixxun |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 16 |
5 1 1 6 7 15
|
syl32anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 17 |
4 16
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |