Metamath Proof Explorer


Theorem snunico

Description: The closure of the open end of a right-open real interval. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion snunico ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐵 ∈ ℝ* )
2 iccid ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } )
3 1 2 syl ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( 𝐵 [,] 𝐵 ) = { 𝐵 } )
4 3 uneq2d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) )
5 simp1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ℝ* )
6 simp3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴𝐵 )
7 1 xrleidd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐵𝐵 )
8 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
9 df-icc [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
10 xrlenlt ( ( 𝐵 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐵𝑤 ↔ ¬ 𝑤 < 𝐵 ) )
11 xrltle ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵𝑤𝐵 ) )
12 11 3adant3 ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵𝑤𝐵 ) )
13 12 adantrd ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤 < 𝐵𝐵𝐵 ) → 𝑤𝐵 ) )
14 xrletr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵𝑤 ) → 𝐴𝑤 ) )
15 8 9 10 9 13 14 ixxun ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐵𝐵𝐵 ) ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) )
16 5 1 1 6 7 15 syl32anc ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) )
17 4 16 eqtr3d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) )