| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncom | ⊢ ( ( 𝐴 (,) 𝐵 )  ∪  ( 𝐴 [,] 𝐴 ) )  =  ( ( 𝐴 [,] 𝐴 )  ∪  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 2 |  | iccid | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴 [,] 𝐴 )  =  { 𝐴 } ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( 𝐴 [,] 𝐴 )  =  { 𝐴 } ) | 
						
							| 4 | 3 | uneq2d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  ( 𝐴 [,] 𝐴 ) )  =  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 7 |  | xrleid | ⊢ ( 𝐴  ∈  ℝ*  →  𝐴  ≤  𝐴 ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  𝐴  ≤  𝐴 ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  𝐴  <  𝐵 ) | 
						
							| 10 |  | df-icc | ⊢ [,]  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) } ) | 
						
							| 11 |  | df-ioo | ⊢ (,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  <  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 12 |  | xrltnle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  →  ( 𝐴  <  𝑤  ↔  ¬  𝑤  ≤  𝐴 ) ) | 
						
							| 13 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 14 |  | xrlelttr | ⊢ ( ( 𝑤  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝑤  ≤  𝐴  ∧  𝐴  <  𝐵 )  →  𝑤  <  𝐵 ) ) | 
						
							| 15 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐴  ∧  𝐴  <  𝑤 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 16 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐴  ∧  𝐴  <  𝑤 ) )  →  𝑤  ∈  ℝ* ) | 
						
							| 17 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐴  ∧  𝐴  <  𝑤 ) )  →  𝐴  <  𝑤 ) | 
						
							| 18 | 15 16 17 | xrltled | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐴  ∧  𝐴  <  𝑤 ) )  →  𝐴  ≤  𝑤 ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  →  ( ( 𝐴  ≤  𝐴  ∧  𝐴  <  𝑤 )  →  𝐴  ≤  𝑤 ) ) | 
						
							| 20 | 10 11 12 13 14 19 | ixxun | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( ( 𝐴 [,] 𝐴 )  ∪  ( 𝐴 (,) 𝐵 ) )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 21 | 5 5 6 8 9 20 | syl32anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 [,] 𝐴 )  ∪  ( 𝐴 (,) 𝐵 ) )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 22 | 1 4 21 | 3eqtr3a | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } )  =  ( 𝐴 [,) 𝐵 ) ) |