Description: A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013) (Revised by Mario Carneiro, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | snwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
2 | snsspw | ⊢ { 𝐴 } ⊆ 𝒫 𝐴 | |
3 | sswf | ⊢ ( ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐴 } ⊆ 𝒫 𝐴 ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) | |
4 | 2 3 | mpan2 | ⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
5 | 1 4 | sylbi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |