Metamath Proof Explorer
Theorem so0
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)
|
|
Ref |
Expression |
|
Assertion |
so0 |
⊢ 𝑅 Or ∅ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
po0 |
⊢ 𝑅 Po ∅ |
2 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) |
3 |
|
df-so |
⊢ ( 𝑅 Or ∅ ↔ ( 𝑅 Po ∅ ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
4 |
1 2 3
|
mpbir2an |
⊢ 𝑅 Or ∅ |