Metamath Proof Explorer
		
		
		
		Description:  A strict order relation has no 3-cycle loops.  (Contributed by NM, 21-Jan-1996)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | so3nr | ⊢  ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sopo | ⊢ ( 𝑅  Or  𝐴  →  𝑅  Po  𝐴 ) | 
						
							| 2 |  | po3nr | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) ) |