Metamath Proof Explorer


Theorem so3nr

Description: A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion so3nr ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷𝐷 𝑅 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sopo ( 𝑅 Or 𝐴𝑅 Po 𝐴 )
2 po3nr ( ( 𝑅 Po 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷𝐷 𝑅 𝐵 ) )
3 1 2 sylan ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷𝐷 𝑅 𝐵 ) )