Metamath Proof Explorer


Theorem soasym

Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion soasym ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( 𝑋 𝑅 𝑌 → ¬ 𝑌 𝑅 𝑋 ) )

Proof

Step Hyp Ref Expression
1 sotric ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( 𝑋 𝑅 𝑌 ↔ ¬ ( 𝑋 = 𝑌𝑌 𝑅 𝑋 ) ) )
2 pm2.46 ( ¬ ( 𝑋 = 𝑌𝑌 𝑅 𝑋 ) → ¬ 𝑌 𝑅 𝑋 )
3 1 2 syl6bi ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( 𝑋 𝑅 𝑌 → ¬ 𝑌 𝑅 𝑋 ) )