Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | soasym | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 𝑅 𝑌 → ¬ 𝑌 𝑅 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 𝑅 𝑌 ↔ ¬ ( 𝑋 = 𝑌 ∨ 𝑌 𝑅 𝑋 ) ) ) | |
2 | pm2.46 | ⊢ ( ¬ ( 𝑋 = 𝑌 ∨ 𝑌 𝑅 𝑋 ) → ¬ 𝑌 𝑅 𝑋 ) | |
3 | 1 2 | syl6bi | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 𝑅 𝑌 → ¬ 𝑌 𝑅 𝑋 ) ) |