| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poeq1 |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴 ) ) |
| 2 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) |
| 3 |
|
biidd |
⊢ ( 𝑅 = 𝑆 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 4 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑆 𝑥 ) ) |
| 5 |
2 3 4
|
3orbi123d |
⊢ ( 𝑅 = 𝑆 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) |
| 6 |
5
|
2ralbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) |
| 7 |
1 6
|
anbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑆 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) ) |
| 8 |
|
df-so |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 9 |
|
df-so |
⊢ ( 𝑆 Or 𝐴 ↔ ( 𝑆 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) |
| 10 |
7 8 9
|
3bitr4g |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴 ) ) |