Description: Equality deduction for total orderings. (Contributed by Stefan O'Rear, 19-Jan-2015) (Proof shortened by Matthew House, 10-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | soeq12d.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| soeq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | soeq12d | ⊢ ( 𝜑 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | soeq12d.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| 2 | soeq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | soeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴 ) ) | |
| 4 | soeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑆 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) | |
| 5 | 3 4 | sylan9bb | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) | 
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |