Metamath Proof Explorer


Theorem soeq2

Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997)

Ref Expression
Assertion soeq2 ( 𝐴 = 𝐵 → ( 𝑅 Or 𝐴𝑅 Or 𝐵 ) )

Proof

Step Hyp Ref Expression
1 soss ( 𝐴𝐵 → ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) )
2 soss ( 𝐵𝐴 → ( 𝑅 Or 𝐴𝑅 Or 𝐵 ) )
3 1 2 anim12i ( ( 𝐴𝐵𝐵𝐴 ) → ( ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) ∧ ( 𝑅 Or 𝐴𝑅 Or 𝐵 ) ) )
4 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
5 dfbi2 ( ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) ↔ ( ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) ∧ ( 𝑅 Or 𝐴𝑅 Or 𝐵 ) ) )
6 3 4 5 3imtr4i ( 𝐴 = 𝐵 → ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) )
7 6 bicomd ( 𝐴 = 𝐵 → ( 𝑅 Or 𝐴𝑅 Or 𝐵 ) )