Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | soeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Or 𝐵 → 𝑅 Or 𝐴 ) ) | |
2 | soss | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Or 𝐴 → 𝑅 Or 𝐵 ) ) | |
3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 Or 𝐵 → 𝑅 Or 𝐴 ) ∧ ( 𝑅 Or 𝐴 → 𝑅 Or 𝐵 ) ) ) |
4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
5 | dfbi2 | ⊢ ( ( 𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴 ) ↔ ( ( 𝑅 Or 𝐵 → 𝑅 Or 𝐴 ) ∧ ( 𝑅 Or 𝐴 → 𝑅 Or 𝐵 ) ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴 ) ) |
7 | 6 | bicomd | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵 ) ) |