| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  𝐴  =  ∅ )  →  𝐴  =  ∅ ) | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 | 1 2 | eqeltrdi | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  𝐴  =  ∅ )  →  𝐴  ∈  V ) | 
						
							| 4 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐴 ) | 
						
							| 5 |  | vsnex | ⊢ { 𝑥 }  ∈  V | 
						
							| 6 |  | dmexg | ⊢ ( 𝑅  ∈  𝑉  →  dom  𝑅  ∈  V ) | 
						
							| 7 |  | rnexg | ⊢ ( 𝑅  ∈  𝑉  →  ran  𝑅  ∈  V ) | 
						
							| 8 |  | unexg | ⊢ ( ( dom  𝑅  ∈  V  ∧  ran  𝑅  ∈  V )  →  ( dom  𝑅  ∪  ran  𝑅 )  ∈  V ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( 𝑅  ∈  𝑉  →  ( dom  𝑅  ∪  ran  𝑅 )  ∈  V ) | 
						
							| 10 |  | unexg | ⊢ ( ( { 𝑥 }  ∈  V  ∧  ( dom  𝑅  ∪  ran  𝑅 )  ∈  V )  →  ( { 𝑥 }  ∪  ( dom  𝑅  ∪  ran  𝑅 ) )  ∈  V ) | 
						
							| 11 | 5 9 10 | sylancr | ⊢ ( 𝑅  ∈  𝑉  →  ( { 𝑥 }  ∪  ( dom  𝑅  ∪  ran  𝑅 ) )  ∈  V ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  𝑥  ∈  𝐴 )  →  ( { 𝑥 }  ∪  ( dom  𝑅  ∪  ran  𝑅 ) )  ∈  V ) | 
						
							| 13 |  | sossfld | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 14 | 13 | adantlr | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 15 |  | ssundif | ⊢ ( 𝐴  ⊆  ( { 𝑥 }  ∪  ( dom  𝑅  ∪  ran  𝑅 ) )  ↔  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  ( { 𝑥 }  ∪  ( dom  𝑅  ∪  ran  𝑅 ) ) ) | 
						
							| 17 | 12 16 | ssexd | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  𝑥  ∈  𝐴 )  →  𝐴  ∈  V ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  →  ( 𝑥  ∈  𝐴  →  𝐴  ∈  V ) ) | 
						
							| 19 | 18 | exlimdv | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  →  ( ∃ 𝑥 𝑥  ∈  𝐴  →  𝐴  ∈  V ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  ∃ 𝑥 𝑥  ∈  𝐴 )  →  𝐴  ∈  V ) | 
						
							| 21 | 4 20 | sylan2b | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  ∧  𝐴  ≠  ∅ )  →  𝐴  ∈  V ) | 
						
							| 22 | 3 21 | pm2.61dane | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ∈  𝑉 )  →  𝐴  ∈  V ) |