Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
2 |
|
0ex |
⊢ ∅ ∈ V |
3 |
1 2
|
eqeltrdi |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝐴 = ∅ ) → 𝐴 ∈ V ) |
4 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
5 |
|
snex |
⊢ { 𝑥 } ∈ V |
6 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
7 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) |
8 |
|
unexg |
⊢ ( ( dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
9 |
6 7 8
|
syl2anc |
⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
10 |
|
unexg |
⊢ ( ( { 𝑥 } ∈ V ∧ ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
11 |
5 9 10
|
sylancr |
⊢ ( 𝑅 ∈ 𝑉 → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
13 |
|
sossfld |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
14 |
13
|
adantlr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
15 |
|
ssundif |
⊢ ( 𝐴 ⊆ ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ↔ ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
16 |
14 15
|
sylibr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
17 |
12 16
|
ssexd |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ V ) |
18 |
17
|
ex |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐴 → 𝐴 ∈ V ) ) |
19 |
18
|
exlimdv |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) → ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝐴 ∈ V ) ) |
20 |
19
|
imp |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) → 𝐴 ∈ V ) |
21 |
4 20
|
sylan2b |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V ) |
22 |
3 21
|
pm2.61dane |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉 ) → 𝐴 ∈ V ) |