Step |
Hyp |
Ref |
Expression |
1 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐴 ) |
2 |
|
relss |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ( Rel ( 𝐴 × 𝐴 ) → Rel 𝑅 ) ) |
3 |
1 2
|
mpi |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → Rel 𝑅 ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → Rel 𝑅 ) |
5 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
6 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑥 } ) |
7 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) |
8 |
6 7
|
sseqtrri |
⊢ 𝐴 ⊆ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) |
9 |
|
simpll |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑅 Or 𝐴 ) |
10 |
|
dmss |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → dom 𝑅 ⊆ dom ( 𝐴 × 𝐴 ) ) |
11 |
|
dmxpid |
⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 |
12 |
10 11
|
sseqtrdi |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → dom 𝑅 ⊆ 𝐴 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → dom 𝑅 ⊆ 𝐴 ) |
14 |
3
|
ad2antlr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → Rel 𝑅 ) |
15 |
|
releldm |
⊢ ( ( Rel 𝑅 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ dom 𝑅 ) |
16 |
14 15
|
sylancom |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ dom 𝑅 ) |
17 |
13 16
|
sseldd |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐴 ) |
18 |
|
sossfld |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
19 |
9 17 18
|
syl2anc |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
20 |
|
ssun1 |
⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
21 |
20 16
|
sselid |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) |
22 |
21
|
snssd |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 } ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
23 |
19 22
|
unssd |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
24 |
8 23
|
sstrid |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
25 |
24
|
ex |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
26 |
5 25
|
syl5bir |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
27 |
26
|
con3dimp |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ¬ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
28 |
27
|
pm2.21d |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ ∅ ) ) |
29 |
4 28
|
relssdv |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → 𝑅 ⊆ ∅ ) |
30 |
|
ss0 |
⊢ ( 𝑅 ⊆ ∅ → 𝑅 = ∅ ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → 𝑅 = ∅ ) |
32 |
31
|
ex |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → 𝑅 = ∅ ) ) |
33 |
32
|
necon1ad |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( 𝑅 ≠ ∅ → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
34 |
33
|
3impia |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ 𝑅 ≠ ∅ ) → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
35 |
|
rnss |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ran 𝑅 ⊆ ran ( 𝐴 × 𝐴 ) ) |
36 |
|
rnxpid |
⊢ ran ( 𝐴 × 𝐴 ) = 𝐴 |
37 |
35 36
|
sseqtrdi |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ran 𝑅 ⊆ 𝐴 ) |
38 |
12 37
|
unssd |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ( dom 𝑅 ∪ ran 𝑅 ) ⊆ 𝐴 ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ 𝑅 ≠ ∅ ) → ( dom 𝑅 ∪ ran 𝑅 ) ⊆ 𝐴 ) |
40 |
34 39
|
eqssd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ 𝑅 ≠ ∅ ) → 𝐴 = ( dom 𝑅 ∪ ran 𝑅 ) ) |