| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relxp | 
							⊢ Rel  ( 𝐴  ×  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							relss | 
							⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ( Rel  ( 𝐴  ×  𝐴 )  →  Rel  𝑅 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpi | 
							⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  Rel  𝑅 )  | 
						
						
							| 4 | 
							
								3
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  Rel  𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑥 𝑅 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							ssun1 | 
							⊢ 𝐴  ⊆  ( 𝐴  ∪  { 𝑥 } )  | 
						
						
							| 7 | 
							
								
							 | 
							undif1 | 
							⊢ ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } )  =  ( 𝐴  ∪  { 𝑥 } )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sseqtrri | 
							⊢ 𝐴  ⊆  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } )  | 
						
						
							| 9 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑅  Or  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							dmss | 
							⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  dom  𝑅  ⊆  dom  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dmxpid | 
							⊢ dom  ( 𝐴  ×  𝐴 )  =  𝐴  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sseqtrdi | 
							⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  dom  𝑅  ⊆  𝐴 )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  dom  𝑅  ⊆  𝐴 )  | 
						
						
							| 14 | 
							
								3
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  Rel  𝑅 )  | 
						
						
							| 15 | 
							
								
							 | 
							releldm | 
							⊢ ( ( Rel  𝑅  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  dom  𝑅 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylancom | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  dom  𝑅 )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							sseldd | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								
							 | 
							sossfld | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  | 
						
						
							| 19 | 
							
								9 17 18
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							ssun1 | 
							⊢ dom  𝑅  ⊆  ( dom  𝑅  ∪  ran  𝑅 )  | 
						
						
							| 21 | 
							
								20 16
							 | 
							sselid | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  ( dom  𝑅  ∪  ran  𝑅 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							snssd | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  { 𝑥 }  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							unssd | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } )  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  | 
						
						
							| 24 | 
							
								8 23
							 | 
							sstrid | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( 𝑥 𝑅 𝑦  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) )  | 
						
						
							| 26 | 
							
								5 25
							 | 
							biimtrrid | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑅  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							con3dimp | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  ¬  〈 𝑥 ,  𝑦 〉  ∈  𝑅 )  | 
						
						
							| 28 | 
							
								27
							 | 
							pm2.21d | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑅  →  〈 𝑥 ,  𝑦 〉  ∈  ∅ ) )  | 
						
						
							| 29 | 
							
								4 28
							 | 
							relssdv | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  𝑅  ⊆  ∅ )  | 
						
						
							| 30 | 
							
								
							 | 
							ss0 | 
							⊢ ( 𝑅  ⊆  ∅  →  𝑅  =  ∅ )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  ∧  ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  →  𝑅  =  ∅ )  | 
						
						
							| 32 | 
							
								31
							 | 
							ex | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( ¬  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 )  →  𝑅  =  ∅ ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							necon1ad | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( 𝑅  ≠  ∅  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3impia | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 )  ∧  𝑅  ≠  ∅ )  →  𝐴  ⊆  ( dom  𝑅  ∪  ran  𝑅 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							rnss | 
							⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ran  𝑅  ⊆  ran  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							rnxpid | 
							⊢ ran  ( 𝐴  ×  𝐴 )  =  𝐴  | 
						
						
							| 37 | 
							
								35 36
							 | 
							sseqtrdi | 
							⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ran  𝑅  ⊆  𝐴 )  | 
						
						
							| 38 | 
							
								12 37
							 | 
							unssd | 
							⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐴 )  →  ( dom  𝑅  ∪  ran  𝑅 )  ⊆  𝐴 )  | 
						
						
							| 39 | 
							
								38
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 )  ∧  𝑅  ≠  ∅ )  →  ( dom  𝑅  ∪  ran  𝑅 )  ⊆  𝐴 )  | 
						
						
							| 40 | 
							
								34 39
							 | 
							eqssd | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝑅  ⊆  ( 𝐴  ×  𝐴 )  ∧  𝑅  ≠  ∅ )  →  𝐴  =  ( dom  𝑅  ∪  ran  𝑅 ) )  |