Metamath Proof Explorer


Theorem soinxp

Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014)

Ref Expression
Assertion soinxp ( 𝑅 Or 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 )

Proof

Step Hyp Ref Expression
1 poinxp ( 𝑅 Po 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Po 𝐴 )
2 brinxp ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 𝑅 𝑦𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ) )
3 biidd ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 = 𝑦𝑥 = 𝑦 ) )
4 brinxp ( ( 𝑦𝐴𝑥𝐴 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
5 4 ancoms ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
6 2 3 5 3orbi123d ( ( 𝑥𝐴𝑦𝐴 ) → ( ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦𝑥 = 𝑦𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) )
7 6 ralbidva ( 𝑥𝐴 → ( ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦𝑥 = 𝑦𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) )
8 7 ralbiia ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦𝑥 = 𝑦𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
9 1 8 anbi12i ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦𝑥 = 𝑦𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) )
10 df-so ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )
11 df-so ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦𝑥 = 𝑦𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) )
12 9 10 11 3bitr4i ( 𝑅 Or 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 )