Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 –onto→ 𝐵 ) |
2 |
|
fof |
⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
3 |
1 2
|
syl |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
4 |
|
sotrieq |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 = 𝑏 ↔ ¬ ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) ) |
5 |
4
|
con2bid |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 = 𝑏 ) ) |
6 |
5
|
ad4ant14 |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 = 𝑏 ) ) |
7 |
|
simprr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝑅 𝑦 ↔ 𝑎 𝑅 𝑦 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑎 ) ) |
10 |
9
|
breq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑎 𝑅 𝑦 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
12 |
|
breq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 𝑅 𝑦 ↔ 𝑎 𝑅 𝑏 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑏 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 𝑅 𝑦 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) ) |
16 |
11 15
|
rspc2va |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
17 |
16
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
18 |
7 17
|
sylan |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
19 |
|
simpllr |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑆 Po 𝐵 ) |
20 |
|
simplrl |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝐻 : 𝐴 –onto→ 𝐵 ) |
21 |
20 2
|
syl |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
22 |
|
simprr |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 ∈ 𝐴 ) |
23 |
21 22
|
ffvelrnd |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) |
24 |
|
poirr |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) |
25 |
|
breq1 |
⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
26 |
25
|
notbid |
⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
27 |
24 26
|
syl5ibrcom |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
28 |
19 23 27
|
syl2anc |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
29 |
28
|
con2d |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
30 |
18 29
|
syld |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
31 |
|
breq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 𝑅 𝑦 ↔ 𝑏 𝑅 𝑦 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑏 ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
34 |
31 33
|
imbi12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑏 𝑅 𝑦 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
35 |
|
breq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝑏 𝑅 𝑦 ↔ 𝑏 𝑅 𝑎 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑎 ) ) |
37 |
36
|
breq2d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
38 |
35 37
|
imbi12d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑏 𝑅 𝑦 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) ) |
39 |
34 38
|
rspc2va |
⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
40 |
39
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
41 |
40
|
ancom2s |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
42 |
7 41
|
sylan |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
43 |
|
breq2 |
⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
44 |
43
|
notbid |
⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ↔ ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
45 |
24 44
|
syl5ibrcom |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
46 |
19 23 45
|
syl2anc |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
47 |
46
|
con2d |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
48 |
42 47
|
syld |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
49 |
30 48
|
jaod |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
50 |
6 49
|
sylbird |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ¬ 𝑎 = 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
51 |
50
|
con4d |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
52 |
51
|
ralrimivva |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
53 |
|
dff13 |
⊢ ( 𝐻 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
54 |
3 52 53
|
sylanbrc |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
55 |
|
df-f1o |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝐻 : 𝐴 –onto→ 𝐵 ) ) |
56 |
54 1 55
|
sylanbrc |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
57 |
|
sotric |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 ↔ ¬ ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) ) |
58 |
57
|
con2bid |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 𝑅 𝑏 ) ) |
59 |
58
|
ad4ant14 |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 𝑅 𝑏 ) ) |
60 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) |
61 |
60
|
breq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
62 |
61
|
notbid |
⊢ ( 𝑎 = 𝑏 → ( ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
63 |
24 62
|
syl5ibrcom |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ( 𝑎 = 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
64 |
19 23 63
|
syl2anc |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 = 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
65 |
|
simprl |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) |
66 |
21 65
|
ffvelrnd |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) |
67 |
|
po2nr |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) ) → ¬ ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ∧ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
68 |
|
imnan |
⊢ ( ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ↔ ¬ ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ∧ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
69 |
67 68
|
sylibr |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
70 |
19 23 66 69
|
syl12anc |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
71 |
42 70
|
syld |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
72 |
64 71
|
jaod |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
73 |
59 72
|
sylbird |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ¬ 𝑎 𝑅 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
74 |
18 73
|
impcon4bid |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
75 |
74
|
ralrimivva |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
76 |
|
df-isom |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) ) |
77 |
56 75 76
|
sylanbrc |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |