| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isorel |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 2 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 3 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 4 |
2 3
|
breqan12d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 6 |
1 5
|
bitrd |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 7 |
6
|
biimpd |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 |
7
|
ralrimivva |
⊢ ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 |
|
ffn |
⊢ ( 𝐹 : 𝐵 ⟶ 𝐶 → 𝐹 Fn 𝐵 ) |
| 10 |
9
|
ad2antrl |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐹 Fn 𝐵 ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
| 12 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 14 |
13
|
3adant3 |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 15 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
| 16 |
15
|
eqcomi |
⊢ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
| 17 |
16
|
a1i |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) ) |
| 18 |
|
fvres |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 19 |
|
fvres |
⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 20 |
18 19
|
eqeqan12d |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 22 |
|
simprl |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
| 23 |
|
simprr |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) |
| 24 |
|
simpl3 |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 27 |
26
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 |
25 27
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 𝑅 𝑦 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 29 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑤 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 31 |
30
|
breq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 32 |
29 31
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 𝑅 𝑦 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 𝑅 𝑤 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 33 |
28 32
|
rspc2va |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑧 𝑅 𝑤 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 34 |
22 23 24 33
|
syl21anc |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 35 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝑅 𝑦 ↔ 𝑤 𝑅 𝑦 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 37 |
36
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 |
35 37
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑤 𝑅 𝑦 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 39 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 𝑅 𝑦 ↔ 𝑤 𝑅 𝑧 ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 41 |
40
|
breq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 42 |
39 41
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 𝑅 𝑦 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 43 |
38 42
|
rspc2va |
⊢ ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑤 𝑅 𝑧 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 44 |
23 22 24 43
|
syl21anc |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑤 𝑅 𝑧 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 45 |
34 44
|
orim12d |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 46 |
45
|
con3d |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) → ¬ ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 47 |
|
simpl1r |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑆 Or 𝐶 ) |
| 48 |
|
simpl2l |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 49 |
|
simpl2r |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐴 ⊆ 𝐵 ) |
| 50 |
49 22
|
sseldd |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐵 ) |
| 51 |
48 50
|
ffvelcdmd |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 52 |
49 23
|
sseldd |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐵 ) |
| 53 |
48 52
|
ffvelcdmd |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 54 |
|
sotrieq |
⊢ ( ( 𝑆 Or 𝐶 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 55 |
47 51 53 54
|
syl12anc |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 56 |
|
simpl1l |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑅 Or 𝐵 ) |
| 57 |
|
sotrieq |
⊢ ( ( 𝑅 Or 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 = 𝑤 ↔ ¬ ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 58 |
56 50 52 57
|
syl12anc |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 = 𝑤 ↔ ¬ ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 59 |
46 55 58
|
3imtr4d |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 60 |
21 59
|
sylbid |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 61 |
60
|
ralrimivva |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 62 |
|
dff1o6 |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ∧ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 63 |
14 17 61 62
|
syl3anbrc |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
| 64 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 65 |
64
|
a1i |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 66 |
65 44
|
orim12d |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 67 |
66
|
con3d |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) → ¬ ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 68 |
|
sotric |
⊢ ( ( 𝑆 Or 𝐶 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 69 |
47 51 53 68
|
syl12anc |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 70 |
|
sotric |
⊢ ( ( 𝑅 Or 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 𝑅 𝑤 ↔ ¬ ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 71 |
56 50 52 70
|
syl12anc |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 ↔ ¬ ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 72 |
67 69 71
|
3imtr4d |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) → 𝑧 𝑅 𝑤 ) ) |
| 73 |
34 72
|
impbid |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 74 |
18 19
|
breqan12d |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 76 |
73 75
|
bitr4d |
⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ) ) |
| 77 |
76
|
ralrimivva |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ) ) |
| 78 |
|
df-isom |
⊢ ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ) ) ) |
| 79 |
63 77 78
|
sylanbrc |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ) |
| 80 |
79
|
3expia |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ) ) |
| 81 |
8 80
|
impbid2 |
⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ) |