Metamath Proof Explorer


Theorem somin2

Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion somin2 ( ( 𝑅 Or 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) ( 𝑅 ∪ I ) 𝐵 )

Proof

Step Hyp Ref Expression
1 somincom ( ( 𝑅 Or 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) )
2 somin1 ( ( 𝑅 Or 𝑋 ∧ ( 𝐵𝑋𝐴𝑋 ) ) → if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ( 𝑅 ∪ I ) 𝐵 )
3 2 ancom2s ( ( 𝑅 Or 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ( 𝑅 ∪ I ) 𝐵 )
4 1 3 eqbrtrd ( ( 𝑅 Or 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) ( 𝑅 ∪ I ) 𝐵 )