Metamath Proof Explorer


Theorem somo

Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion somo ( 𝑅 Or 𝐴 → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑧𝑥 𝑅 𝑧 ) )
2 1 notbid ( 𝑦 = 𝑥 → ( ¬ 𝑦 𝑅 𝑧 ↔ ¬ 𝑥 𝑅 𝑧 ) )
3 2 rspcv ( 𝑥𝐴 → ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 → ¬ 𝑥 𝑅 𝑧 ) )
4 breq1 ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥𝑧 𝑅 𝑥 ) )
5 4 notbid ( 𝑦 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑧 𝑅 𝑥 ) )
6 5 rspcv ( 𝑧𝐴 → ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 → ¬ 𝑧 𝑅 𝑥 ) )
7 3 6 im2anan9 ( ( 𝑥𝐴𝑧𝐴 ) → ( ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) )
8 7 ancomsd ( ( 𝑥𝐴𝑧𝐴 ) → ( ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) )
9 8 imp ( ( ( 𝑥𝐴𝑧𝐴 ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) )
10 ioran ( ¬ ( 𝑥 𝑅 𝑧𝑧 𝑅 𝑥 ) ↔ ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) )
11 solin ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( 𝑥 𝑅 𝑧𝑥 = 𝑧𝑧 𝑅 𝑥 ) )
12 df-3or ( ( 𝑥 𝑅 𝑧𝑥 = 𝑧𝑧 𝑅 𝑥 ) ↔ ( ( 𝑥 𝑅 𝑧𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) )
13 11 12 sylib ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ( 𝑥 𝑅 𝑧𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) )
14 or32 ( ( ( 𝑥 𝑅 𝑧𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) ↔ ( ( 𝑥 𝑅 𝑧𝑧 𝑅 𝑥 ) ∨ 𝑥 = 𝑧 ) )
15 13 14 sylib ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ( 𝑥 𝑅 𝑧𝑧 𝑅 𝑥 ) ∨ 𝑥 = 𝑧 ) )
16 15 ord ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ¬ ( 𝑥 𝑅 𝑧𝑧 𝑅 𝑥 ) → 𝑥 = 𝑧 ) )
17 10 16 syl5bir ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) → 𝑥 = 𝑧 ) )
18 9 17 syl5 ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ( ( 𝑥𝐴𝑧𝐴 ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) ) → 𝑥 = 𝑧 ) )
19 18 exp4b ( 𝑅 Or 𝐴 → ( ( 𝑥𝐴𝑧𝐴 ) → ( ( 𝑥𝐴𝑧𝐴 ) → ( ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) ) )
20 19 pm2.43d ( 𝑅 Or 𝐴 → ( ( 𝑥𝐴𝑧𝐴 ) → ( ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) )
21 20 ralrimivv ( 𝑅 Or 𝐴 → ∀ 𝑥𝐴𝑧𝐴 ( ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) )
22 breq2 ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑧 ) )
23 22 notbid ( 𝑥 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑧 ) )
24 23 ralbidv ( 𝑥 = 𝑧 → ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) )
25 24 rmo4 ( ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑥𝐴𝑧𝐴 ( ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) )
26 21 25 sylibr ( 𝑅 Or 𝐴 → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 )