Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) |
2 |
1
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑦 𝑅 𝑧 ↔ ¬ 𝑥 𝑅 𝑧 ) ) |
3 |
2
|
rspcv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 → ¬ 𝑥 𝑅 𝑧 ) ) |
4 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑦 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑧 𝑅 𝑥 ) ) |
6 |
5
|
rspcv |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 → ¬ 𝑧 𝑅 𝑥 ) ) |
7 |
3 6
|
im2anan9 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) ) |
8 |
7
|
ancomsd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) |
10 |
|
ioran |
⊢ ( ¬ ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) ↔ ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) |
11 |
|
solin |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) |
12 |
|
df-3or |
⊢ ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ↔ ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) ) |
14 |
|
or32 |
⊢ ( ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) ↔ ( ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) ∨ 𝑥 = 𝑧 ) ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) ∨ 𝑥 = 𝑧 ) ) |
16 |
15
|
ord |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ¬ ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) → 𝑥 = 𝑧 ) ) |
17 |
10 16
|
syl5bir |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) → 𝑥 = 𝑧 ) ) |
18 |
9 17
|
syl5 |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) ) → 𝑥 = 𝑧 ) ) |
19 |
18
|
exp4b |
⊢ ( 𝑅 Or 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) ) ) |
20 |
19
|
pm2.43d |
⊢ ( 𝑅 Or 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) ) |
21 |
20
|
ralrimivv |
⊢ ( 𝑅 Or 𝐴 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) |
22 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) |
23 |
22
|
notbid |
⊢ ( 𝑥 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑧 ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) ) |
25 |
24
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) |
26 |
21 25
|
sylibr |
⊢ ( 𝑅 Or 𝐴 → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |