Metamath Proof Explorer
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)
|
|
Ref |
Expression |
|
Hypotheses |
soi.1 |
⊢ 𝑅 Or 𝑆 |
|
|
soi.2 |
⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) |
|
Assertion |
son2lpi |
⊢ ¬ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
soi.1 |
⊢ 𝑅 Or 𝑆 |
2 |
|
soi.2 |
⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) |
3 |
1 2
|
soirri |
⊢ ¬ 𝐴 𝑅 𝐴 |
4 |
1 2
|
sotri |
⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → 𝐴 𝑅 𝐴 ) |
5 |
3 4
|
mto |
⊢ ¬ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) |