Metamath Proof Explorer


Theorem son2lpi

Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ ( 𝑆 × 𝑆 )
Assertion son2lpi ¬ ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 )

Proof

Step Hyp Ref Expression
1 soi.1 𝑅 Or 𝑆
2 soi.2 𝑅 ⊆ ( 𝑆 × 𝑆 )
3 1 2 soirri ¬ 𝐴 𝑅 𝐴
4 1 2 sotri ( ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) → 𝐴 𝑅 𝐴 )
5 3 4 mto ¬ ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 )