| Step |
Hyp |
Ref |
Expression |
| 1 |
|
porpss |
⊢ [⊊] Po 𝐴 |
| 2 |
1
|
biantrur |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ↔ ( [⊊] Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) ) |
| 3 |
|
sspsstri |
⊢ ( ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ↔ ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
4
|
brrpss |
⊢ ( 𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦 ) |
| 6 |
|
biid |
⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
7
|
brrpss |
⊢ ( 𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥 ) |
| 9 |
5 6 8
|
3orbi123i |
⊢ ( ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ↔ ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) |
| 10 |
3 9
|
bitr4i |
⊢ ( ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ↔ ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) |
| 11 |
10
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) |
| 12 |
|
df-so |
⊢ ( [⊊] Or 𝐴 ↔ ( [⊊] Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) ) |
| 13 |
2 11 12
|
3bitr4ri |
⊢ ( [⊊] Or 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |