Metamath Proof Explorer


Theorem sorpsscmpl

Description: The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpsscmpl ( [] Or 𝑌 → [] Or { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } )

Proof

Step Hyp Ref Expression
1 difeq2 ( 𝑢 = 𝑥 → ( 𝐴𝑢 ) = ( 𝐴𝑥 ) )
2 1 eleq1d ( 𝑢 = 𝑥 → ( ( 𝐴𝑢 ) ∈ 𝑌 ↔ ( 𝐴𝑥 ) ∈ 𝑌 ) )
3 2 elrab ( 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴𝑥 ) ∈ 𝑌 ) )
4 difeq2 ( 𝑢 = 𝑦 → ( 𝐴𝑢 ) = ( 𝐴𝑦 ) )
5 4 eleq1d ( 𝑢 = 𝑦 → ( ( 𝐴𝑢 ) ∈ 𝑌 ↔ ( 𝐴𝑦 ) ∈ 𝑌 ) )
6 5 elrab ( 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) )
7 an4 ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴𝑥 ) ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) ) ↔ ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) ) )
8 7 biimpi ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴𝑥 ) ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) ) → ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) ) )
9 3 6 8 syl2anb ( ( 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ∧ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ) → ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) ) )
10 sorpssi ( ( [] Or 𝑌 ∧ ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) ) → ( ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) ∨ ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) ) )
11 10 expcom ( ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) → ( [] Or 𝑌 → ( ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) ∨ ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) ) ) )
12 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
13 dfss4 ( 𝑥𝐴 ↔ ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 )
14 12 13 bitri ( 𝑥 ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 )
15 velpw ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 )
16 dfss4 ( 𝑦𝐴 ↔ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 )
17 15 16 bitri ( 𝑦 ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 )
18 sscon ( ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) → ( 𝐴 ∖ ( 𝐴𝑥 ) ) ⊆ ( 𝐴 ∖ ( 𝐴𝑦 ) ) )
19 sseq12 ( ( ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ∖ ( 𝐴𝑥 ) ) ⊆ ( 𝐴 ∖ ( 𝐴𝑦 ) ) ↔ 𝑥𝑦 ) )
20 18 19 syl5ib ( ( ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 ) → ( ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) → 𝑥𝑦 ) )
21 sscon ( ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) → ( 𝐴 ∖ ( 𝐴𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐴𝑥 ) ) )
22 sseq12 ( ( ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 ∧ ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 ) → ( ( 𝐴 ∖ ( 𝐴𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐴𝑥 ) ) ↔ 𝑦𝑥 ) )
23 22 ancoms ( ( ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ∖ ( 𝐴𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐴𝑥 ) ) ↔ 𝑦𝑥 ) )
24 21 23 syl5ib ( ( ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 ) → ( ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) → 𝑦𝑥 ) )
25 20 24 orim12d ( ( ( 𝐴 ∖ ( 𝐴𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 ) → ( ( ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) ∨ ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) ) → ( 𝑥𝑦𝑦𝑥 ) ) )
26 14 17 25 syl2anb ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) → ( ( ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) ∨ ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) ) → ( 𝑥𝑦𝑦𝑥 ) ) )
27 26 com12 ( ( ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) ∨ ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) ) → ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) → ( 𝑥𝑦𝑦𝑥 ) ) )
28 27 orcoms ( ( ( 𝐴𝑥 ) ⊆ ( 𝐴𝑦 ) ∨ ( 𝐴𝑦 ) ⊆ ( 𝐴𝑥 ) ) → ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) → ( 𝑥𝑦𝑦𝑥 ) ) )
29 11 28 syl6 ( ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) → ( [] Or 𝑌 → ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) → ( 𝑥𝑦𝑦𝑥 ) ) ) )
30 29 com3l ( [] Or 𝑌 → ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) → ( ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) → ( 𝑥𝑦𝑦𝑥 ) ) ) )
31 30 impd ( [] Or 𝑌 → ( ( ( 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴𝑥 ) ∈ 𝑌 ∧ ( 𝐴𝑦 ) ∈ 𝑌 ) ) → ( 𝑥𝑦𝑦𝑥 ) ) )
32 9 31 syl5 ( [] Or 𝑌 → ( ( 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ∧ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ) → ( 𝑥𝑦𝑦𝑥 ) ) )
33 32 ralrimivv ( [] Or 𝑌 → ∀ 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ∀ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ( 𝑥𝑦𝑦𝑥 ) )
34 sorpss ( [] Or { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ↔ ∀ 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ∀ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } ( 𝑥𝑦𝑦𝑥 ) )
35 33 34 sylibr ( [] Or 𝑌 → [] Or { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑢 ) ∈ 𝑌 } )