| Step | Hyp | Ref | Expression | 
						
							| 1 |  | solin | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  [⊊]  𝐶  ∨  𝐵  =  𝐶  ∨  𝐶  [⊊]  𝐵 ) ) | 
						
							| 2 |  | elex | ⊢ ( 𝐶  ∈  𝐴  →  𝐶  ∈  V ) | 
						
							| 3 | 2 | ad2antll | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  𝐶  ∈  V ) | 
						
							| 4 |  | brrpssg | ⊢ ( 𝐶  ∈  V  →  ( 𝐵  [⊊]  𝐶  ↔  𝐵  ⊊  𝐶 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  [⊊]  𝐶  ↔  𝐵  ⊊  𝐶 ) ) | 
						
							| 6 |  | biidd | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  =  𝐶  ↔  𝐵  =  𝐶 ) ) | 
						
							| 7 |  | elex | ⊢ ( 𝐵  ∈  𝐴  →  𝐵  ∈  V ) | 
						
							| 8 | 7 | ad2antrl | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  𝐵  ∈  V ) | 
						
							| 9 |  | brrpssg | ⊢ ( 𝐵  ∈  V  →  ( 𝐶  [⊊]  𝐵  ↔  𝐶  ⊊  𝐵 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐶  [⊊]  𝐵  ↔  𝐶  ⊊  𝐵 ) ) | 
						
							| 11 | 5 6 10 | 3orbi123d | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( ( 𝐵  [⊊]  𝐶  ∨  𝐵  =  𝐶  ∨  𝐶  [⊊]  𝐵 )  ↔  ( 𝐵  ⊊  𝐶  ∨  𝐵  =  𝐶  ∨  𝐶  ⊊  𝐵 ) ) ) | 
						
							| 12 | 1 11 | mpbid | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  ⊊  𝐶  ∨  𝐵  =  𝐶  ∨  𝐶  ⊊  𝐵 ) ) | 
						
							| 13 |  | sspsstri | ⊢ ( ( 𝐵  ⊆  𝐶  ∨  𝐶  ⊆  𝐵 )  ↔  ( 𝐵  ⊊  𝐶  ∨  𝐵  =  𝐶  ∨  𝐶  ⊊  𝐵 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  ⊆  𝐶  ∨  𝐶  ⊆  𝐵 ) ) |