Metamath Proof Explorer


Theorem sorpssi

Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpssi ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵𝐶𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 solin ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵 ) )
2 elex ( 𝐶𝐴𝐶 ∈ V )
3 2 ad2antll ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → 𝐶 ∈ V )
4 brrpssg ( 𝐶 ∈ V → ( 𝐵 [] 𝐶𝐵𝐶 ) )
5 3 4 syl ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵 [] 𝐶𝐵𝐶 ) )
6 biidd ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵 = 𝐶𝐵 = 𝐶 ) )
7 elex ( 𝐵𝐴𝐵 ∈ V )
8 7 ad2antrl ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → 𝐵 ∈ V )
9 brrpssg ( 𝐵 ∈ V → ( 𝐶 [] 𝐵𝐶𝐵 ) )
10 8 9 syl ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐶 [] 𝐵𝐶𝐵 ) )
11 5 6 10 3orbi123d ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( ( 𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵 ) ↔ ( 𝐵𝐶𝐵 = 𝐶𝐶𝐵 ) ) )
12 1 11 mpbid ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵𝐶𝐵 = 𝐶𝐶𝐵 ) )
13 sspsstri ( ( 𝐵𝐶𝐶𝐵 ) ↔ ( 𝐵𝐶𝐵 = 𝐶𝐶𝐵 ) )
14 12 13 sylibr ( ( [] Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵𝐶𝐶𝐵 ) )