| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  𝐵  ∈  𝐴 ) | 
						
							| 2 |  | dfss2 | ⊢ ( 𝐵  ⊆  𝐶  ↔  ( 𝐵  ∩  𝐶 )  =  𝐵 ) | 
						
							| 3 |  | eleq1 | ⊢ ( ( 𝐵  ∩  𝐶 )  =  𝐵  →  ( ( 𝐵  ∩  𝐶 )  ∈  𝐴  ↔  𝐵  ∈  𝐴 ) ) | 
						
							| 4 | 2 3 | sylbi | ⊢ ( 𝐵  ⊆  𝐶  →  ( ( 𝐵  ∩  𝐶 )  ∈  𝐴  ↔  𝐵  ∈  𝐴 ) ) | 
						
							| 5 | 1 4 | syl5ibrcom | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  ⊆  𝐶  →  ( 𝐵  ∩  𝐶 )  ∈  𝐴 ) ) | 
						
							| 6 |  | simprr | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  𝐶  ∈  𝐴 ) | 
						
							| 7 |  | sseqin2 | ⊢ ( 𝐶  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐶 )  =  𝐶 ) | 
						
							| 8 |  | eleq1 | ⊢ ( ( 𝐵  ∩  𝐶 )  =  𝐶  →  ( ( 𝐵  ∩  𝐶 )  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 9 | 7 8 | sylbi | ⊢ ( 𝐶  ⊆  𝐵  →  ( ( 𝐵  ∩  𝐶 )  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 10 | 6 9 | syl5ibrcom | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐶  ⊆  𝐵  →  ( 𝐵  ∩  𝐶 )  ∈  𝐴 ) ) | 
						
							| 11 |  | sorpssi | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  ⊆  𝐶  ∨  𝐶  ⊆  𝐵 ) ) | 
						
							| 12 | 5 10 11 | mpjaod | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  ∩  𝐶 )  ∈  𝐴 ) |