Step |
Hyp |
Ref |
Expression |
1 |
|
intss1 |
⊢ ( 𝑢 ∈ 𝑌 → ∩ 𝑌 ⊆ 𝑢 ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∩ 𝑌 ⊆ 𝑢 ) |
3 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝑌 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
4 |
3
|
anassrs |
⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
5 |
|
sspss |
⊢ ( 𝑣 ⊆ 𝑢 ↔ ( 𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢 ) ) |
6 |
|
orel1 |
⊢ ( ¬ 𝑣 ⊊ 𝑢 → ( ( 𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢 ) → 𝑣 = 𝑢 ) ) |
7 |
|
eqimss2 |
⊢ ( 𝑣 = 𝑢 → 𝑢 ⊆ 𝑣 ) |
8 |
6 7
|
syl6com |
⊢ ( ( 𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢 ) → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
9 |
5 8
|
sylbi |
⊢ ( 𝑣 ⊆ 𝑢 → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
10 |
9
|
jao1i |
⊢ ( ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
11 |
4 10
|
syl |
⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
12 |
11
|
ralimdva |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 → ∀ 𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣 ) ) |
13 |
12
|
3impia |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∀ 𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣 ) |
14 |
|
ssint |
⊢ ( 𝑢 ⊆ ∩ 𝑌 ↔ ∀ 𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣 ) |
15 |
13 14
|
sylibr |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → 𝑢 ⊆ ∩ 𝑌 ) |
16 |
2 15
|
eqssd |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∩ 𝑌 = 𝑢 ) |
17 |
|
simp2 |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → 𝑢 ∈ 𝑌 ) |
18 |
16 17
|
eqeltrd |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∩ 𝑌 ∈ 𝑌 ) |
19 |
18
|
rexlimdv3a |
⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 → ∩ 𝑌 ∈ 𝑌 ) ) |
20 |
|
intss1 |
⊢ ( 𝑣 ∈ 𝑌 → ∩ 𝑌 ⊆ 𝑣 ) |
21 |
|
ssnpss |
⊢ ( ∩ 𝑌 ⊆ 𝑣 → ¬ 𝑣 ⊊ ∩ 𝑌 ) |
22 |
20 21
|
syl |
⊢ ( 𝑣 ∈ 𝑌 → ¬ 𝑣 ⊊ ∩ 𝑌 ) |
23 |
22
|
rgen |
⊢ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌 |
24 |
|
psseq2 |
⊢ ( 𝑢 = ∩ 𝑌 → ( 𝑣 ⊊ 𝑢 ↔ 𝑣 ⊊ ∩ 𝑌 ) ) |
25 |
24
|
notbid |
⊢ ( 𝑢 = ∩ 𝑌 → ( ¬ 𝑣 ⊊ 𝑢 ↔ ¬ 𝑣 ⊊ ∩ 𝑌 ) ) |
26 |
25
|
ralbidv |
⊢ ( 𝑢 = ∩ 𝑌 → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌 ) ) |
27 |
26
|
rspcev |
⊢ ( ( ∩ 𝑌 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌 ) → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) |
28 |
23 27
|
mpan2 |
⊢ ( ∩ 𝑌 ∈ 𝑌 → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) |
29 |
19 28
|
impbid1 |
⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∩ 𝑌 ∈ 𝑌 ) ) |