| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sorpssi | ⊢ ( (  [⊊]   Or  𝑌  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) | 
						
							| 2 | 1 | anassrs | ⊢ ( ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌 )  ∧  𝑣  ∈  𝑌 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) | 
						
							| 3 |  | sspss | ⊢ ( 𝑢  ⊆  𝑣  ↔  ( 𝑢  ⊊  𝑣  ∨  𝑢  =  𝑣 ) ) | 
						
							| 4 |  | orel1 | ⊢ ( ¬  𝑢  ⊊  𝑣  →  ( ( 𝑢  ⊊  𝑣  ∨  𝑢  =  𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 5 |  | eqimss2 | ⊢ ( 𝑢  =  𝑣  →  𝑣  ⊆  𝑢 ) | 
						
							| 6 | 4 5 | syl6com | ⊢ ( ( 𝑢  ⊊  𝑣  ∨  𝑢  =  𝑣 )  →  ( ¬  𝑢  ⊊  𝑣  →  𝑣  ⊆  𝑢 ) ) | 
						
							| 7 | 3 6 | sylbi | ⊢ ( 𝑢  ⊆  𝑣  →  ( ¬  𝑢  ⊊  𝑣  →  𝑣  ⊆  𝑢 ) ) | 
						
							| 8 |  | ax-1 | ⊢ ( 𝑣  ⊆  𝑢  →  ( ¬  𝑢  ⊊  𝑣  →  𝑣  ⊆  𝑢 ) ) | 
						
							| 9 | 7 8 | jaoi | ⊢ ( ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 )  →  ( ¬  𝑢  ⊊  𝑣  →  𝑣  ⊆  𝑢 ) ) | 
						
							| 10 | 2 9 | syl | ⊢ ( ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌 )  ∧  𝑣  ∈  𝑌 )  →  ( ¬  𝑢  ⊊  𝑣  →  𝑣  ⊆  𝑢 ) ) | 
						
							| 11 | 10 | ralimdva | ⊢ ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌 )  →  ( ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣  →  ∀ 𝑣  ∈  𝑌 𝑣  ⊆  𝑢 ) ) | 
						
							| 12 | 11 | 3impia | ⊢ ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌  ∧  ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 )  →  ∀ 𝑣  ∈  𝑌 𝑣  ⊆  𝑢 ) | 
						
							| 13 |  | unissb | ⊢ ( ∪  𝑌  ⊆  𝑢  ↔  ∀ 𝑣  ∈  𝑌 𝑣  ⊆  𝑢 ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌  ∧  ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 )  →  ∪  𝑌  ⊆  𝑢 ) | 
						
							| 15 |  | elssuni | ⊢ ( 𝑢  ∈  𝑌  →  𝑢  ⊆  ∪  𝑌 ) | 
						
							| 16 | 15 | 3ad2ant2 | ⊢ ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌  ∧  ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 )  →  𝑢  ⊆  ∪  𝑌 ) | 
						
							| 17 | 14 16 | eqssd | ⊢ ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌  ∧  ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 )  →  ∪  𝑌  =  𝑢 ) | 
						
							| 18 |  | simp2 | ⊢ ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌  ∧  ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 )  →  𝑢  ∈  𝑌 ) | 
						
							| 19 | 17 18 | eqeltrd | ⊢ ( (  [⊊]   Or  𝑌  ∧  𝑢  ∈  𝑌  ∧  ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 )  →  ∪  𝑌  ∈  𝑌 ) | 
						
							| 20 | 19 | rexlimdv3a | ⊢ (  [⊊]   Or  𝑌  →  ( ∃ 𝑢  ∈  𝑌 ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣  →  ∪  𝑌  ∈  𝑌 ) ) | 
						
							| 21 |  | elssuni | ⊢ ( 𝑣  ∈  𝑌  →  𝑣  ⊆  ∪  𝑌 ) | 
						
							| 22 |  | ssnpss | ⊢ ( 𝑣  ⊆  ∪  𝑌  →  ¬  ∪  𝑌  ⊊  𝑣 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝑣  ∈  𝑌  →  ¬  ∪  𝑌  ⊊  𝑣 ) | 
						
							| 24 | 23 | rgen | ⊢ ∀ 𝑣  ∈  𝑌 ¬  ∪  𝑌  ⊊  𝑣 | 
						
							| 25 |  | psseq1 | ⊢ ( 𝑢  =  ∪  𝑌  →  ( 𝑢  ⊊  𝑣  ↔  ∪  𝑌  ⊊  𝑣 ) ) | 
						
							| 26 | 25 | notbid | ⊢ ( 𝑢  =  ∪  𝑌  →  ( ¬  𝑢  ⊊  𝑣  ↔  ¬  ∪  𝑌  ⊊  𝑣 ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑢  =  ∪  𝑌  →  ( ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣  ↔  ∀ 𝑣  ∈  𝑌 ¬  ∪  𝑌  ⊊  𝑣 ) ) | 
						
							| 28 | 27 | rspcev | ⊢ ( ( ∪  𝑌  ∈  𝑌  ∧  ∀ 𝑣  ∈  𝑌 ¬  ∪  𝑌  ⊊  𝑣 )  →  ∃ 𝑢  ∈  𝑌 ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 ) | 
						
							| 29 | 24 28 | mpan2 | ⊢ ( ∪  𝑌  ∈  𝑌  →  ∃ 𝑢  ∈  𝑌 ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣 ) | 
						
							| 30 | 20 29 | impbid1 | ⊢ (  [⊊]   Or  𝑌  →  ( ∃ 𝑢  ∈  𝑌 ∀ 𝑣  ∈  𝑌 ¬  𝑢  ⊊  𝑣  ↔  ∪  𝑌  ∈  𝑌 ) ) |