Metamath Proof Explorer


Theorem sorpssuni

Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpssuni ( [] Or 𝑌 → ( ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌 ) )

Proof

Step Hyp Ref Expression
1 sorpssi ( ( [] Or 𝑌 ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( 𝑢𝑣𝑣𝑢 ) )
2 1 anassrs ( ( ( [] Or 𝑌𝑢𝑌 ) ∧ 𝑣𝑌 ) → ( 𝑢𝑣𝑣𝑢 ) )
3 sspss ( 𝑢𝑣 ↔ ( 𝑢𝑣𝑢 = 𝑣 ) )
4 orel1 ( ¬ 𝑢𝑣 → ( ( 𝑢𝑣𝑢 = 𝑣 ) → 𝑢 = 𝑣 ) )
5 eqimss2 ( 𝑢 = 𝑣𝑣𝑢 )
6 4 5 syl6com ( ( 𝑢𝑣𝑢 = 𝑣 ) → ( ¬ 𝑢𝑣𝑣𝑢 ) )
7 3 6 sylbi ( 𝑢𝑣 → ( ¬ 𝑢𝑣𝑣𝑢 ) )
8 ax-1 ( 𝑣𝑢 → ( ¬ 𝑢𝑣𝑣𝑢 ) )
9 7 8 jaoi ( ( 𝑢𝑣𝑣𝑢 ) → ( ¬ 𝑢𝑣𝑣𝑢 ) )
10 2 9 syl ( ( ( [] Or 𝑌𝑢𝑌 ) ∧ 𝑣𝑌 ) → ( ¬ 𝑢𝑣𝑣𝑢 ) )
11 10 ralimdva ( ( [] Or 𝑌𝑢𝑌 ) → ( ∀ 𝑣𝑌 ¬ 𝑢𝑣 → ∀ 𝑣𝑌 𝑣𝑢 ) )
12 11 3impia ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑢𝑣 ) → ∀ 𝑣𝑌 𝑣𝑢 )
13 unissb ( 𝑌𝑢 ↔ ∀ 𝑣𝑌 𝑣𝑢 )
14 12 13 sylibr ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑢𝑣 ) → 𝑌𝑢 )
15 elssuni ( 𝑢𝑌𝑢 𝑌 )
16 15 3ad2ant2 ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑢𝑣 ) → 𝑢 𝑌 )
17 14 16 eqssd ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑢𝑣 ) → 𝑌 = 𝑢 )
18 simp2 ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑢𝑣 ) → 𝑢𝑌 )
19 17 18 eqeltrd ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑢𝑣 ) → 𝑌𝑌 )
20 19 rexlimdv3a ( [] Or 𝑌 → ( ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌 ) )
21 elssuni ( 𝑣𝑌𝑣 𝑌 )
22 ssnpss ( 𝑣 𝑌 → ¬ 𝑌𝑣 )
23 21 22 syl ( 𝑣𝑌 → ¬ 𝑌𝑣 )
24 23 rgen 𝑣𝑌 ¬ 𝑌𝑣
25 psseq1 ( 𝑢 = 𝑌 → ( 𝑢𝑣 𝑌𝑣 ) )
26 25 notbid ( 𝑢 = 𝑌 → ( ¬ 𝑢𝑣 ↔ ¬ 𝑌𝑣 ) )
27 26 ralbidv ( 𝑢 = 𝑌 → ( ∀ 𝑣𝑌 ¬ 𝑢𝑣 ↔ ∀ 𝑣𝑌 ¬ 𝑌𝑣 ) )
28 27 rspcev ( ( 𝑌𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑌𝑣 ) → ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 )
29 24 28 mpan2 ( 𝑌𝑌 → ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 )
30 20 29 impbid1 ( [] Or 𝑌 → ( ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌 ) )