| Step |
Hyp |
Ref |
Expression |
| 1 |
|
soseq.1 |
⊢ 𝑅 Or ( 𝐴 ∪ { ∅ } ) |
| 2 |
|
soseq.2 |
⊢ 𝐹 = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 } |
| 3 |
|
soseq.3 |
⊢ 𝑆 = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) } |
| 4 |
|
soseq.4 |
⊢ ¬ ∅ ∈ 𝐴 |
| 5 |
|
sopo |
⊢ ( 𝑅 Or ( 𝐴 ∪ { ∅ } ) → 𝑅 Po ( 𝐴 ∪ { ∅ } ) ) |
| 6 |
1 5
|
ax-mp |
⊢ 𝑅 Po ( 𝐴 ∪ { ∅ } ) |
| 7 |
6 2 3
|
poseq |
⊢ 𝑆 Po 𝐹 |
| 8 |
|
eleq1w |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹 ) ) |
| 9 |
8
|
anbi1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ) ) |
| 10 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑓 = 𝑎 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 13 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) |
| 14 |
13
|
breq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
| 15 |
12 14
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 17 |
9 16
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 18 |
|
eleq1w |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹 ) ) |
| 19 |
18
|
anbi2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ) ) |
| 20 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 21 |
20
|
eqeq2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 22 |
21
|
ralbidv |
⊢ ( 𝑔 = 𝑏 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 23 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 24 |
23
|
breq2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) |
| 25 |
22 24
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 26 |
25
|
rexbidv |
⊢ ( 𝑔 = 𝑏 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 27 |
19 26
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) ) ) |
| 28 |
17 27 3
|
brabg |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑎 𝑆 𝑏 ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) ) ) |
| 29 |
28
|
bianabs |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑎 𝑆 𝑏 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 30 |
|
eleq1w |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹 ) ) |
| 31 |
30
|
anbi1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ) ) |
| 32 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 33 |
32
|
eqeq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 34 |
33
|
ralbidv |
⊢ ( 𝑓 = 𝑏 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 35 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 36 |
35
|
breq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
| 37 |
34 36
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 38 |
37
|
rexbidv |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 39 |
31 38
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 40 |
|
eleq1w |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹 ) ) |
| 41 |
40
|
anbi2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ) ) |
| 42 |
|
fveq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
| 43 |
42
|
eqeq2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) ) |
| 44 |
43
|
ralbidv |
⊢ ( 𝑔 = 𝑎 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) ) |
| 45 |
|
fveq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) |
| 46 |
45
|
breq2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 47 |
44 46
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 48 |
47
|
rexbidv |
⊢ ( 𝑔 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 49 |
41 48
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 50 |
39 49 3
|
brabg |
⊢ ( ( 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ( 𝑏 𝑆 𝑎 ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 51 |
50
|
bianabs |
⊢ ( ( 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ( 𝑏 𝑆 𝑎 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 52 |
51
|
ancoms |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑏 𝑆 𝑎 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 53 |
29 52
|
orbi12d |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ) ↔ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 54 |
53
|
notbid |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ¬ ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ) ↔ ¬ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 55 |
|
ralinexa |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 56 |
|
andi |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 57 |
|
eqcom |
⊢ ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
| 58 |
57
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
| 59 |
58
|
anbi1i |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 60 |
59
|
orbi2i |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 61 |
56 60
|
bitri |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 62 |
61
|
rexbii |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ On ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 63 |
|
r19.43 |
⊢ ( ∃ 𝑥 ∈ On ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 64 |
62 63
|
bitri |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 65 |
55 64
|
xchbinx |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ¬ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 66 |
|
feq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 : 𝑥 ⟶ 𝐴 ↔ 𝑓 : 𝑦 ⟶ 𝐴 ) ) |
| 67 |
66
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑦 ∈ On 𝑓 : 𝑦 ⟶ 𝐴 ) |
| 68 |
67
|
abbii |
⊢ { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 } = { 𝑓 ∣ ∃ 𝑦 ∈ On 𝑓 : 𝑦 ⟶ 𝐴 } |
| 69 |
2 68
|
eqtri |
⊢ 𝐹 = { 𝑓 ∣ ∃ 𝑦 ∈ On 𝑓 : 𝑦 ⟶ 𝐴 } |
| 70 |
69
|
orderseqlem |
⊢ ( 𝑎 ∈ 𝐹 → ( 𝑎 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 71 |
69
|
orderseqlem |
⊢ ( 𝑏 ∈ 𝐹 → ( 𝑏 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 72 |
|
sotrieq |
⊢ ( ( 𝑅 Or ( 𝐴 ∪ { ∅ } ) ∧ ( ( 𝑎 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑏 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 73 |
1 72
|
mpan |
⊢ ( ( ( 𝑎 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑏 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 74 |
70 71 73
|
syl2an |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 75 |
74
|
imbi2d |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 76 |
75
|
ralbidv |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 77 |
|
vex |
⊢ 𝑦 ∈ V |
| 78 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑦 ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 80 |
78 79
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 81 |
77 80
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 82 |
81
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 83 |
82
|
imbi1i |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 84 |
83
|
ralbii |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 85 |
|
tfisg |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 86 |
84 85
|
sylbir |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 87 |
|
vex |
⊢ 𝑎 ∈ V |
| 88 |
|
feq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 : 𝑥 ⟶ 𝐴 ↔ 𝑎 : 𝑥 ⟶ 𝐴 ) ) |
| 89 |
88
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑥 ∈ On 𝑎 : 𝑥 ⟶ 𝐴 ) ) |
| 90 |
87 89 2
|
elab2 |
⊢ ( 𝑎 ∈ 𝐹 ↔ ∃ 𝑥 ∈ On 𝑎 : 𝑥 ⟶ 𝐴 ) |
| 91 |
|
feq2 |
⊢ ( 𝑥 = 𝑝 → ( 𝑎 : 𝑥 ⟶ 𝐴 ↔ 𝑎 : 𝑝 ⟶ 𝐴 ) ) |
| 92 |
91
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On 𝑎 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑝 ∈ On 𝑎 : 𝑝 ⟶ 𝐴 ) |
| 93 |
90 92
|
bitri |
⊢ ( 𝑎 ∈ 𝐹 ↔ ∃ 𝑝 ∈ On 𝑎 : 𝑝 ⟶ 𝐴 ) |
| 94 |
|
vex |
⊢ 𝑏 ∈ V |
| 95 |
|
feq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 : 𝑥 ⟶ 𝐴 ↔ 𝑏 : 𝑥 ⟶ 𝐴 ) ) |
| 96 |
95
|
rexbidv |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑥 ∈ On 𝑏 : 𝑥 ⟶ 𝐴 ) ) |
| 97 |
94 96 2
|
elab2 |
⊢ ( 𝑏 ∈ 𝐹 ↔ ∃ 𝑥 ∈ On 𝑏 : 𝑥 ⟶ 𝐴 ) |
| 98 |
|
feq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑏 : 𝑥 ⟶ 𝐴 ↔ 𝑏 : 𝑞 ⟶ 𝐴 ) ) |
| 99 |
98
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On 𝑏 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑞 ∈ On 𝑏 : 𝑞 ⟶ 𝐴 ) |
| 100 |
97 99
|
bitri |
⊢ ( 𝑏 ∈ 𝐹 ↔ ∃ 𝑞 ∈ On 𝑏 : 𝑞 ⟶ 𝐴 ) |
| 101 |
93 100
|
anbi12i |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ↔ ( ∃ 𝑝 ∈ On 𝑎 : 𝑝 ⟶ 𝐴 ∧ ∃ 𝑞 ∈ On 𝑏 : 𝑞 ⟶ 𝐴 ) ) |
| 102 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ On ∃ 𝑞 ∈ On ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ↔ ( ∃ 𝑝 ∈ On 𝑎 : 𝑝 ⟶ 𝐴 ∧ ∃ 𝑞 ∈ On 𝑏 : 𝑞 ⟶ 𝐴 ) ) |
| 103 |
101 102
|
bitr4i |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ↔ ∃ 𝑝 ∈ On ∃ 𝑞 ∈ On ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) |
| 104 |
|
onss |
⊢ ( 𝑞 ∈ On → 𝑞 ⊆ On ) |
| 105 |
|
ssralv |
⊢ ( 𝑞 ⊆ On → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 106 |
104 105
|
syl |
⊢ ( 𝑞 ∈ On → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 107 |
106
|
ad2antlr |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 108 |
|
fveq2 |
⊢ ( 𝑥 = 𝑝 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑝 ) ) |
| 109 |
|
fveq2 |
⊢ ( 𝑥 = 𝑝 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑝 ) ) |
| 110 |
108 109
|
eqeq12d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) ) ) |
| 111 |
110
|
rspcv |
⊢ ( 𝑝 ∈ 𝑞 → ( ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) ) ) |
| 112 |
111
|
a1i |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑝 ∈ 𝑞 → ( ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) ) ) ) |
| 113 |
|
ffvelcdm |
⊢ ( ( 𝑏 : 𝑞 ⟶ 𝐴 ∧ 𝑝 ∈ 𝑞 ) → ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 ) |
| 114 |
|
fdm |
⊢ ( 𝑎 : 𝑝 ⟶ 𝐴 → dom 𝑎 = 𝑝 ) |
| 115 |
|
eloni |
⊢ ( 𝑝 ∈ On → Ord 𝑝 ) |
| 116 |
|
ordirr |
⊢ ( Ord 𝑝 → ¬ 𝑝 ∈ 𝑝 ) |
| 117 |
115 116
|
syl |
⊢ ( 𝑝 ∈ On → ¬ 𝑝 ∈ 𝑝 ) |
| 118 |
|
eleq2 |
⊢ ( dom 𝑎 = 𝑝 → ( 𝑝 ∈ dom 𝑎 ↔ 𝑝 ∈ 𝑝 ) ) |
| 119 |
118
|
notbid |
⊢ ( dom 𝑎 = 𝑝 → ( ¬ 𝑝 ∈ dom 𝑎 ↔ ¬ 𝑝 ∈ 𝑝 ) ) |
| 120 |
119
|
biimparc |
⊢ ( ( ¬ 𝑝 ∈ 𝑝 ∧ dom 𝑎 = 𝑝 ) → ¬ 𝑝 ∈ dom 𝑎 ) |
| 121 |
117 120
|
sylan |
⊢ ( ( 𝑝 ∈ On ∧ dom 𝑎 = 𝑝 ) → ¬ 𝑝 ∈ dom 𝑎 ) |
| 122 |
|
ndmfv |
⊢ ( ¬ 𝑝 ∈ dom 𝑎 → ( 𝑎 ‘ 𝑝 ) = ∅ ) |
| 123 |
|
eqtr2 |
⊢ ( ( ( 𝑎 ‘ 𝑝 ) = ∅ ∧ ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) ) → ∅ = ( 𝑏 ‘ 𝑝 ) ) |
| 124 |
|
eleq1 |
⊢ ( ∅ = ( 𝑏 ‘ 𝑝 ) → ( ∅ ∈ 𝐴 ↔ ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 ) ) |
| 125 |
124
|
biimprd |
⊢ ( ∅ = ( 𝑏 ‘ 𝑝 ) → ( ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 → ∅ ∈ 𝐴 ) ) |
| 126 |
123 125
|
syl |
⊢ ( ( ( 𝑎 ‘ 𝑝 ) = ∅ ∧ ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) ) → ( ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 → ∅ ∈ 𝐴 ) ) |
| 127 |
126
|
ex |
⊢ ( ( 𝑎 ‘ 𝑝 ) = ∅ → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ( ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 → ∅ ∈ 𝐴 ) ) ) |
| 128 |
121 122 127
|
3syl |
⊢ ( ( 𝑝 ∈ On ∧ dom 𝑎 = 𝑝 ) → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ( ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 → ∅ ∈ 𝐴 ) ) ) |
| 129 |
128
|
com23 |
⊢ ( ( 𝑝 ∈ On ∧ dom 𝑎 = 𝑝 ) → ( ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ∅ ∈ 𝐴 ) ) ) |
| 130 |
114 129
|
sylan2 |
⊢ ( ( 𝑝 ∈ On ∧ 𝑎 : 𝑝 ⟶ 𝐴 ) → ( ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ∅ ∈ 𝐴 ) ) ) |
| 131 |
130
|
adantlr |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ 𝑎 : 𝑝 ⟶ 𝐴 ) → ( ( 𝑏 ‘ 𝑝 ) ∈ 𝐴 → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ∅ ∈ 𝐴 ) ) ) |
| 132 |
113 131
|
syl5 |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ 𝑎 : 𝑝 ⟶ 𝐴 ) → ( ( 𝑏 : 𝑞 ⟶ 𝐴 ∧ 𝑝 ∈ 𝑞 ) → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ∅ ∈ 𝐴 ) ) ) |
| 133 |
132
|
exp4b |
⊢ ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) → ( 𝑎 : 𝑝 ⟶ 𝐴 → ( 𝑏 : 𝑞 ⟶ 𝐴 → ( 𝑝 ∈ 𝑞 → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ∅ ∈ 𝐴 ) ) ) ) ) |
| 134 |
133
|
imp32 |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑝 ∈ 𝑞 → ( ( 𝑎 ‘ 𝑝 ) = ( 𝑏 ‘ 𝑝 ) → ∅ ∈ 𝐴 ) ) ) |
| 135 |
112 134
|
syldd |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑝 ∈ 𝑞 → ( ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∅ ∈ 𝐴 ) ) ) |
| 136 |
135
|
com23 |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑝 ∈ 𝑞 → ∅ ∈ 𝐴 ) ) ) |
| 137 |
136
|
imp |
⊢ ( ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) → ( 𝑝 ∈ 𝑞 → ∅ ∈ 𝐴 ) ) |
| 138 |
4 137
|
mtoi |
⊢ ( ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) → ¬ 𝑝 ∈ 𝑞 ) |
| 139 |
138
|
ex |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝑞 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ¬ 𝑝 ∈ 𝑞 ) ) |
| 140 |
107 139
|
syld |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ¬ 𝑝 ∈ 𝑞 ) ) |
| 141 |
|
onss |
⊢ ( 𝑝 ∈ On → 𝑝 ⊆ On ) |
| 142 |
|
ssralv |
⊢ ( 𝑝 ⊆ On → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 143 |
141 142
|
syl |
⊢ ( 𝑝 ∈ On → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 144 |
143
|
ad2antrr |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 145 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑞 ) ) |
| 146 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑞 ) ) |
| 147 |
145 146
|
eqeq12d |
⊢ ( 𝑥 = 𝑞 → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) ) ) |
| 148 |
147
|
rspcv |
⊢ ( 𝑞 ∈ 𝑝 → ( ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) ) ) |
| 149 |
148
|
a1i |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑞 ∈ 𝑝 → ( ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) ) ) ) |
| 150 |
|
ffvelcdm |
⊢ ( ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑞 ∈ 𝑝 ) → ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 ) |
| 151 |
|
fdm |
⊢ ( 𝑏 : 𝑞 ⟶ 𝐴 → dom 𝑏 = 𝑞 ) |
| 152 |
|
eloni |
⊢ ( 𝑞 ∈ On → Ord 𝑞 ) |
| 153 |
|
ordirr |
⊢ ( Ord 𝑞 → ¬ 𝑞 ∈ 𝑞 ) |
| 154 |
152 153
|
syl |
⊢ ( 𝑞 ∈ On → ¬ 𝑞 ∈ 𝑞 ) |
| 155 |
|
eleq2 |
⊢ ( dom 𝑏 = 𝑞 → ( 𝑞 ∈ dom 𝑏 ↔ 𝑞 ∈ 𝑞 ) ) |
| 156 |
155
|
notbid |
⊢ ( dom 𝑏 = 𝑞 → ( ¬ 𝑞 ∈ dom 𝑏 ↔ ¬ 𝑞 ∈ 𝑞 ) ) |
| 157 |
156
|
biimparc |
⊢ ( ( ¬ 𝑞 ∈ 𝑞 ∧ dom 𝑏 = 𝑞 ) → ¬ 𝑞 ∈ dom 𝑏 ) |
| 158 |
|
ndmfv |
⊢ ( ¬ 𝑞 ∈ dom 𝑏 → ( 𝑏 ‘ 𝑞 ) = ∅ ) |
| 159 |
157 158
|
syl |
⊢ ( ( ¬ 𝑞 ∈ 𝑞 ∧ dom 𝑏 = 𝑞 ) → ( 𝑏 ‘ 𝑞 ) = ∅ ) |
| 160 |
154 159
|
sylan |
⊢ ( ( 𝑞 ∈ On ∧ dom 𝑏 = 𝑞 ) → ( 𝑏 ‘ 𝑞 ) = ∅ ) |
| 161 |
|
eqtr |
⊢ ( ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) ∧ ( 𝑏 ‘ 𝑞 ) = ∅ ) → ( 𝑎 ‘ 𝑞 ) = ∅ ) |
| 162 |
|
eleq1 |
⊢ ( ( 𝑎 ‘ 𝑞 ) = ∅ → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) ) |
| 163 |
162
|
biimpd |
⊢ ( ( 𝑎 ‘ 𝑞 ) = ∅ → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 → ∅ ∈ 𝐴 ) ) |
| 164 |
161 163
|
syl |
⊢ ( ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) ∧ ( 𝑏 ‘ 𝑞 ) = ∅ ) → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 → ∅ ∈ 𝐴 ) ) |
| 165 |
164
|
expcom |
⊢ ( ( 𝑏 ‘ 𝑞 ) = ∅ → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 → ∅ ∈ 𝐴 ) ) ) |
| 166 |
165
|
com23 |
⊢ ( ( 𝑏 ‘ 𝑞 ) = ∅ → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) |
| 167 |
160 166
|
syl |
⊢ ( ( 𝑞 ∈ On ∧ dom 𝑏 = 𝑞 ) → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) |
| 168 |
167
|
adantll |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ dom 𝑏 = 𝑞 ) → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) |
| 169 |
151 168
|
sylan2 |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) → ( ( 𝑎 ‘ 𝑞 ) ∈ 𝐴 → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) |
| 170 |
150 169
|
syl5 |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) → ( ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑞 ∈ 𝑝 ) → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) |
| 171 |
170
|
exp4b |
⊢ ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) → ( 𝑏 : 𝑞 ⟶ 𝐴 → ( 𝑎 : 𝑝 ⟶ 𝐴 → ( 𝑞 ∈ 𝑝 → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) ) ) |
| 172 |
171
|
com23 |
⊢ ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) → ( 𝑎 : 𝑝 ⟶ 𝐴 → ( 𝑏 : 𝑞 ⟶ 𝐴 → ( 𝑞 ∈ 𝑝 → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) ) ) |
| 173 |
172
|
imp32 |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑞 ∈ 𝑝 → ( ( 𝑎 ‘ 𝑞 ) = ( 𝑏 ‘ 𝑞 ) → ∅ ∈ 𝐴 ) ) ) |
| 174 |
149 173
|
syldd |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑞 ∈ 𝑝 → ( ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ∅ ∈ 𝐴 ) ) ) |
| 175 |
174
|
com23 |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑞 ∈ 𝑝 → ∅ ∈ 𝐴 ) ) ) |
| 176 |
175
|
imp |
⊢ ( ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) → ( 𝑞 ∈ 𝑝 → ∅ ∈ 𝐴 ) ) |
| 177 |
4 176
|
mtoi |
⊢ ( ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) → ¬ 𝑞 ∈ 𝑝 ) |
| 178 |
177
|
ex |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ¬ 𝑞 ∈ 𝑝 ) ) |
| 179 |
144 178
|
syld |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ¬ 𝑞 ∈ 𝑝 ) ) |
| 180 |
140 179
|
jcad |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( ¬ 𝑝 ∈ 𝑞 ∧ ¬ 𝑞 ∈ 𝑝 ) ) ) |
| 181 |
|
ordtri3or |
⊢ ( ( Ord 𝑝 ∧ Ord 𝑞 ) → ( 𝑝 ∈ 𝑞 ∨ 𝑝 = 𝑞 ∨ 𝑞 ∈ 𝑝 ) ) |
| 182 |
115 152 181
|
syl2an |
⊢ ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) → ( 𝑝 ∈ 𝑞 ∨ 𝑝 = 𝑞 ∨ 𝑞 ∈ 𝑝 ) ) |
| 183 |
182
|
adantr |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑝 ∈ 𝑞 ∨ 𝑝 = 𝑞 ∨ 𝑞 ∈ 𝑝 ) ) |
| 184 |
|
3orel13 |
⊢ ( ( ¬ 𝑝 ∈ 𝑞 ∧ ¬ 𝑞 ∈ 𝑝 ) → ( ( 𝑝 ∈ 𝑞 ∨ 𝑝 = 𝑞 ∨ 𝑞 ∈ 𝑝 ) → 𝑝 = 𝑞 ) ) |
| 185 |
180 183 184
|
syl6ci |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → 𝑝 = 𝑞 ) ) |
| 186 |
185 144
|
jcad |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → ( 𝑝 = 𝑞 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 187 |
|
ffn |
⊢ ( 𝑎 : 𝑝 ⟶ 𝐴 → 𝑎 Fn 𝑝 ) |
| 188 |
|
ffn |
⊢ ( 𝑏 : 𝑞 ⟶ 𝐴 → 𝑏 Fn 𝑞 ) |
| 189 |
|
eqfnfv2 |
⊢ ( ( 𝑎 Fn 𝑝 ∧ 𝑏 Fn 𝑞 ) → ( 𝑎 = 𝑏 ↔ ( 𝑝 = 𝑞 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 190 |
187 188 189
|
syl2an |
⊢ ( ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) → ( 𝑎 = 𝑏 ↔ ( 𝑝 = 𝑞 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 191 |
190
|
adantl |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( 𝑎 = 𝑏 ↔ ( 𝑝 = 𝑞 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 192 |
186 191
|
sylibrd |
⊢ ( ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) ∧ ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → 𝑎 = 𝑏 ) ) |
| 193 |
192
|
ex |
⊢ ( ( 𝑝 ∈ On ∧ 𝑞 ∈ On ) → ( ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → 𝑎 = 𝑏 ) ) ) |
| 194 |
193
|
rexlimivv |
⊢ ( ∃ 𝑝 ∈ On ∃ 𝑞 ∈ On ( 𝑎 : 𝑝 ⟶ 𝐴 ∧ 𝑏 : 𝑞 ⟶ 𝐴 ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → 𝑎 = 𝑏 ) ) |
| 195 |
103 194
|
sylbi |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ On ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) → 𝑎 = 𝑏 ) ) |
| 196 |
86 195
|
syl5 |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) → 𝑎 = 𝑏 ) ) |
| 197 |
76 196
|
sylbird |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ¬ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ∨ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) → 𝑎 = 𝑏 ) ) |
| 198 |
65 197
|
biimtrrid |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ¬ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ∨ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑏 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) → 𝑎 = 𝑏 ) ) |
| 199 |
54 198
|
sylbid |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ¬ ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ) → 𝑎 = 𝑏 ) ) |
| 200 |
199
|
orrd |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ) ∨ 𝑎 = 𝑏 ) ) |
| 201 |
|
3orcomb |
⊢ ( ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ↔ ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ∨ 𝑎 = 𝑏 ) ) |
| 202 |
|
df-3or |
⊢ ( ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ∨ 𝑎 = 𝑏 ) ↔ ( ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ) ∨ 𝑎 = 𝑏 ) ) |
| 203 |
201 202
|
bitr2i |
⊢ ( ( ( 𝑎 𝑆 𝑏 ∨ 𝑏 𝑆 𝑎 ) ∨ 𝑎 = 𝑏 ) ↔ ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ) |
| 204 |
200 203
|
sylib |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ) |
| 205 |
204
|
rgen2 |
⊢ ∀ 𝑎 ∈ 𝐹 ∀ 𝑏 ∈ 𝐹 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) |
| 206 |
|
df-so |
⊢ ( 𝑆 Or 𝐹 ↔ ( 𝑆 Po 𝐹 ∧ ∀ 𝑎 ∈ 𝐹 ∀ 𝑏 ∈ 𝐹 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ) ) |
| 207 |
7 205 206
|
mpbir2an |
⊢ 𝑆 Or 𝐹 |