Step |
Hyp |
Ref |
Expression |
1 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) |
2 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝐴 } → 𝑦 = 𝐴 ) |
3 |
2
|
eqcomd |
⊢ ( 𝑦 ∈ { 𝐴 } → 𝐴 = 𝑦 ) |
4 |
1 3
|
sylan9eq |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → 𝑥 = 𝑦 ) |
5 |
4
|
3mix2d |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
6 |
5
|
rgen2 |
⊢ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) |
7 |
|
df-so |
⊢ ( 𝑅 Or { 𝐴 } ↔ ( 𝑅 Po { 𝐴 } ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
8 |
6 7
|
mpbiran2 |
⊢ ( 𝑅 Or { 𝐴 } ↔ 𝑅 Po { 𝐴 } ) |
9 |
|
posn |
⊢ ( Rel 𝑅 → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
10 |
8 9
|
bitrid |
⊢ ( Rel 𝑅 → ( 𝑅 Or { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |