Metamath Proof Explorer


Theorem sosn

Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion sosn ( Rel 𝑅 → ( 𝑅 Or { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elsni ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 )
2 elsni ( 𝑦 ∈ { 𝐴 } → 𝑦 = 𝐴 )
3 2 eqcomd ( 𝑦 ∈ { 𝐴 } → 𝐴 = 𝑦 )
4 1 3 sylan9eq ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → 𝑥 = 𝑦 )
5 4 3mix2d ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
6 5 rgen2 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 )
7 df-so ( 𝑅 Or { 𝐴 } ↔ ( 𝑅 Po { 𝐴 } ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )
8 6 7 mpbiran2 ( 𝑅 Or { 𝐴 } ↔ 𝑅 Po { 𝐴 } )
9 posn ( Rel 𝑅 → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) )
10 8 9 syl5bb ( Rel 𝑅 → ( 𝑅 Or { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) )