Metamath Proof Explorer


Theorem sossfld

Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that (/) Or { B } ). (Contributed by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion sossfld ( ( 𝑅 Or 𝐴𝐵𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
2 sotrieq ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝐵𝐴 ) ) → ( 𝑥 = 𝐵 ↔ ¬ ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) ) )
3 2 necon2abid ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝐵𝐴 ) ) → ( ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) ↔ 𝑥𝐵 ) )
4 3 anass1rs ( ( ( 𝑅 Or 𝐴𝐵𝐴 ) ∧ 𝑥𝐴 ) → ( ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) ↔ 𝑥𝐵 ) )
5 breldmg ( ( 𝑥𝐴𝐵𝐴𝑥 𝑅 𝐵 ) → 𝑥 ∈ dom 𝑅 )
6 5 3expia ( ( 𝑥𝐴𝐵𝐴 ) → ( 𝑥 𝑅 𝐵𝑥 ∈ dom 𝑅 ) )
7 6 ancoms ( ( 𝐵𝐴𝑥𝐴 ) → ( 𝑥 𝑅 𝐵𝑥 ∈ dom 𝑅 ) )
8 brelrng ( ( 𝐵𝐴𝑥𝐴𝐵 𝑅 𝑥 ) → 𝑥 ∈ ran 𝑅 )
9 8 3expia ( ( 𝐵𝐴𝑥𝐴 ) → ( 𝐵 𝑅 𝑥𝑥 ∈ ran 𝑅 ) )
10 7 9 orim12d ( ( 𝐵𝐴𝑥𝐴 ) → ( ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) → ( 𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅 ) ) )
11 elun ( 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( 𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅 ) )
12 10 11 syl6ibr ( ( 𝐵𝐴𝑥𝐴 ) → ( ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) )
13 12 adantll ( ( ( 𝑅 Or 𝐴𝐵𝐴 ) ∧ 𝑥𝐴 ) → ( ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) )
14 4 13 sylbird ( ( ( 𝑅 Or 𝐴𝐵𝐴 ) ∧ 𝑥𝐴 ) → ( 𝑥𝐵𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) )
15 14 expimpd ( ( 𝑅 Or 𝐴𝐵𝐴 ) → ( ( 𝑥𝐴𝑥𝐵 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) )
16 1 15 syl5bi ( ( 𝑅 Or 𝐴𝐵𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) )
17 16 ssrdv ( ( 𝑅 Or 𝐴𝐵𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )