Metamath Proof Explorer
Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996)
|
|
Ref |
Expression |
|
Assertion |
sotr |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sopo |
⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) |
| 2 |
|
potr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |