Metamath Proof Explorer


Theorem sotr2

Description: A transitivity relation. (Read B <_ C and C < D implies B < D .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Assertion sotr2 ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( ¬ 𝐶 𝑅 𝐵𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) )

Proof

Step Hyp Ref Expression
1 sotric ( ( 𝑅 Or 𝐴 ∧ ( 𝐶𝐴𝐵𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) ) )
2 1 ancom2s ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) ) )
3 2 3adantr3 ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) ) )
4 3 con2bid ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) ↔ ¬ 𝐶 𝑅 𝐵 ) )
5 breq1 ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷𝐵 𝑅 𝐷 ) )
6 5 biimpd ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷𝐵 𝑅 𝐷 ) )
7 6 a1i ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷𝐵 𝑅 𝐷 ) ) )
8 sotr ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) )
9 8 expd ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( 𝐵 𝑅 𝐶 → ( 𝐶 𝑅 𝐷𝐵 𝑅 𝐷 ) ) )
10 7 9 jaod ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) → ( 𝐶 𝑅 𝐷𝐵 𝑅 𝐷 ) ) )
11 4 10 sylbird ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ¬ 𝐶 𝑅 𝐵 → ( 𝐶 𝑅 𝐷𝐵 𝑅 𝐷 ) ) )
12 11 impd ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( ¬ 𝐶 𝑅 𝐵𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) )