Step |
Hyp |
Ref |
Expression |
1 |
|
sotric |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
2 |
1
|
ancom2s |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
3 |
2
|
3adantr3 |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
4 |
3
|
con2bid |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ↔ ¬ 𝐶 𝑅 𝐵 ) ) |
5 |
|
breq1 |
⊢ ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷 ↔ 𝐵 𝑅 𝐷 ) ) |
6 |
5
|
biimpd |
⊢ ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
8 |
|
sotr |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |
9 |
8
|
expd |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
10 |
7 9
|
jaod |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
11 |
4 10
|
sylbird |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ 𝐶 𝑅 𝐵 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
12 |
11
|
impd |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ¬ 𝐶 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |