Metamath Proof Explorer


Theorem sotri2

Description: A transitivity relation. (Read A <_ B and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ ( 𝑆 × 𝑆 )
Assertion sotri2 ( ( 𝐴𝑆 ∧ ¬ 𝐵 𝑅 𝐴𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 soi.1 𝑅 Or 𝑆
2 soi.2 𝑅 ⊆ ( 𝑆 × 𝑆 )
3 2 brel ( 𝐵 𝑅 𝐶 → ( 𝐵𝑆𝐶𝑆 ) )
4 3 simpld ( 𝐵 𝑅 𝐶𝐵𝑆 )
5 sotric ( ( 𝑅 Or 𝑆 ∧ ( 𝐵𝑆𝐴𝑆 ) ) → ( 𝐵 𝑅 𝐴 ↔ ¬ ( 𝐵 = 𝐴𝐴 𝑅 𝐵 ) ) )
6 1 5 mpan ( ( 𝐵𝑆𝐴𝑆 ) → ( 𝐵 𝑅 𝐴 ↔ ¬ ( 𝐵 = 𝐴𝐴 𝑅 𝐵 ) ) )
7 6 con2bid ( ( 𝐵𝑆𝐴𝑆 ) → ( ( 𝐵 = 𝐴𝐴 𝑅 𝐵 ) ↔ ¬ 𝐵 𝑅 𝐴 ) )
8 breq1 ( 𝐵 = 𝐴 → ( 𝐵 𝑅 𝐶𝐴 𝑅 𝐶 ) )
9 8 biimpd ( 𝐵 = 𝐴 → ( 𝐵 𝑅 𝐶𝐴 𝑅 𝐶 ) )
10 1 2 sotri ( ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 )
11 10 ex ( 𝐴 𝑅 𝐵 → ( 𝐵 𝑅 𝐶𝐴 𝑅 𝐶 ) )
12 9 11 jaoi ( ( 𝐵 = 𝐴𝐴 𝑅 𝐵 ) → ( 𝐵 𝑅 𝐶𝐴 𝑅 𝐶 ) )
13 7 12 syl6bir ( ( 𝐵𝑆𝐴𝑆 ) → ( ¬ 𝐵 𝑅 𝐴 → ( 𝐵 𝑅 𝐶𝐴 𝑅 𝐶 ) ) )
14 13 com3r ( 𝐵 𝑅 𝐶 → ( ( 𝐵𝑆𝐴𝑆 ) → ( ¬ 𝐵 𝑅 𝐴𝐴 𝑅 𝐶 ) ) )
15 4 14 mpand ( 𝐵 𝑅 𝐶 → ( 𝐴𝑆 → ( ¬ 𝐵 𝑅 𝐴𝐴 𝑅 𝐶 ) ) )
16 15 3imp231 ( ( 𝐴𝑆 ∧ ¬ 𝐵 𝑅 𝐴𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 )