Step |
Hyp |
Ref |
Expression |
1 |
|
soi.1 |
⊢ 𝑅 Or 𝑆 |
2 |
|
soi.2 |
⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) |
3 |
2
|
brel |
⊢ ( 𝐵 𝑅 𝐶 → ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
4 |
3
|
simpld |
⊢ ( 𝐵 𝑅 𝐶 → 𝐵 ∈ 𝑆 ) |
5 |
|
sotric |
⊢ ( ( 𝑅 Or 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( 𝐵 𝑅 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) ) ) |
6 |
1 5
|
mpan |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐵 𝑅 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) ) ) |
7 |
6
|
con2bid |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) ↔ ¬ 𝐵 𝑅 𝐴 ) ) |
8 |
|
breq1 |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 𝑅 𝐶 ↔ 𝐴 𝑅 𝐶 ) ) |
9 |
8
|
biimpd |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) |
10 |
1 2
|
sotri |
⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |
11 |
10
|
ex |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) |
12 |
9 11
|
jaoi |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) |
13 |
7 12
|
syl6bir |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ¬ 𝐵 𝑅 𝐴 → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) ) |
14 |
13
|
com3r |
⊢ ( 𝐵 𝑅 𝐶 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ¬ 𝐵 𝑅 𝐴 → 𝐴 𝑅 𝐶 ) ) ) |
15 |
4 14
|
mpand |
⊢ ( 𝐵 𝑅 𝐶 → ( 𝐴 ∈ 𝑆 → ( ¬ 𝐵 𝑅 𝐴 → 𝐴 𝑅 𝐶 ) ) ) |
16 |
15
|
3imp231 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ¬ 𝐵 𝑅 𝐴 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |