| Step | Hyp | Ref | Expression | 
						
							| 1 |  | soi.1 | ⊢ 𝑅  Or  𝑆 | 
						
							| 2 |  | soi.2 | ⊢ 𝑅  ⊆  ( 𝑆  ×  𝑆 ) | 
						
							| 3 | 2 | brel | ⊢ ( 𝐴 𝑅 𝐵  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 4 | 3 | simprd | ⊢ ( 𝐴 𝑅 𝐵  →  𝐵  ∈  𝑆 ) | 
						
							| 5 |  | sotric | ⊢ ( ( 𝑅  Or  𝑆  ∧  ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝐶 𝑅 𝐵  ↔  ¬  ( 𝐶  =  𝐵  ∨  𝐵 𝑅 𝐶 ) ) ) | 
						
							| 6 | 1 5 | mpan | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐶 𝑅 𝐵  ↔  ¬  ( 𝐶  =  𝐵  ∨  𝐵 𝑅 𝐶 ) ) ) | 
						
							| 7 | 6 | con2bid | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐶  =  𝐵  ∨  𝐵 𝑅 𝐶 )  ↔  ¬  𝐶 𝑅 𝐵 ) ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝐶  =  𝐵  →  ( 𝐴 𝑅 𝐶  ↔  𝐴 𝑅 𝐵 ) ) | 
						
							| 9 | 8 | biimprd | ⊢ ( 𝐶  =  𝐵  →  ( 𝐴 𝑅 𝐵  →  𝐴 𝑅 𝐶 ) ) | 
						
							| 10 | 1 2 | sotri | ⊢ ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐶 )  →  𝐴 𝑅 𝐶 ) | 
						
							| 11 | 10 | expcom | ⊢ ( 𝐵 𝑅 𝐶  →  ( 𝐴 𝑅 𝐵  →  𝐴 𝑅 𝐶 ) ) | 
						
							| 12 | 9 11 | jaoi | ⊢ ( ( 𝐶  =  𝐵  ∨  𝐵 𝑅 𝐶 )  →  ( 𝐴 𝑅 𝐵  →  𝐴 𝑅 𝐶 ) ) | 
						
							| 13 | 7 12 | biimtrrdi | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ¬  𝐶 𝑅 𝐵  →  ( 𝐴 𝑅 𝐵  →  𝐴 𝑅 𝐶 ) ) ) | 
						
							| 14 | 13 | com3r | ⊢ ( 𝐴 𝑅 𝐵  →  ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ¬  𝐶 𝑅 𝐵  →  𝐴 𝑅 𝐶 ) ) ) | 
						
							| 15 | 4 14 | mpan2d | ⊢ ( 𝐴 𝑅 𝐵  →  ( 𝐶  ∈  𝑆  →  ( ¬  𝐶 𝑅 𝐵  →  𝐴 𝑅 𝐶 ) ) ) | 
						
							| 16 | 15 | 3imp21 | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐴 𝑅 𝐵  ∧  ¬  𝐶 𝑅 𝐵 )  →  𝐴 𝑅 𝐶 ) |