Step |
Hyp |
Ref |
Expression |
1 |
|
soi.1 |
⊢ 𝑅 Or 𝑆 |
2 |
|
soi.2 |
⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) |
3 |
2
|
brel |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
4 |
3
|
simprd |
⊢ ( 𝐴 𝑅 𝐵 → 𝐵 ∈ 𝑆 ) |
5 |
|
sotric |
⊢ ( ( 𝑅 Or 𝑆 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
6 |
1 5
|
mpan |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
7 |
6
|
con2bid |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ↔ ¬ 𝐶 𝑅 𝐵 ) ) |
8 |
|
breq2 |
⊢ ( 𝐶 = 𝐵 → ( 𝐴 𝑅 𝐶 ↔ 𝐴 𝑅 𝐵 ) ) |
9 |
8
|
biimprd |
⊢ ( 𝐶 = 𝐵 → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) |
10 |
1 2
|
sotri |
⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |
11 |
10
|
expcom |
⊢ ( 𝐵 𝑅 𝐶 → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) |
12 |
9 11
|
jaoi |
⊢ ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) |
13 |
7 12
|
syl6bir |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ¬ 𝐶 𝑅 𝐵 → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) ) |
14 |
13
|
com3r |
⊢ ( 𝐴 𝑅 𝐵 → ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ¬ 𝐶 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) ) |
15 |
4 14
|
mpan2d |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐶 ∈ 𝑆 → ( ¬ 𝐶 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) ) |
16 |
15
|
3imp21 |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐴 𝑅 𝐵 ∧ ¬ 𝐶 𝑅 𝐵 ) → 𝐴 𝑅 𝐶 ) |