Metamath Proof Explorer


Theorem sotri3

Description: A transitivity relation. (Read A < B and B <_ C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ ( 𝑆 × 𝑆 )
Assertion sotri3 ( ( 𝐶𝑆𝐴 𝑅 𝐵 ∧ ¬ 𝐶 𝑅 𝐵 ) → 𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 soi.1 𝑅 Or 𝑆
2 soi.2 𝑅 ⊆ ( 𝑆 × 𝑆 )
3 2 brel ( 𝐴 𝑅 𝐵 → ( 𝐴𝑆𝐵𝑆 ) )
4 3 simprd ( 𝐴 𝑅 𝐵𝐵𝑆 )
5 sotric ( ( 𝑅 Or 𝑆 ∧ ( 𝐶𝑆𝐵𝑆 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) ) )
6 1 5 mpan ( ( 𝐶𝑆𝐵𝑆 ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) ) )
7 6 con2bid ( ( 𝐶𝑆𝐵𝑆 ) → ( ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) ↔ ¬ 𝐶 𝑅 𝐵 ) )
8 breq2 ( 𝐶 = 𝐵 → ( 𝐴 𝑅 𝐶𝐴 𝑅 𝐵 ) )
9 8 biimprd ( 𝐶 = 𝐵 → ( 𝐴 𝑅 𝐵𝐴 𝑅 𝐶 ) )
10 1 2 sotri ( ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 )
11 10 expcom ( 𝐵 𝑅 𝐶 → ( 𝐴 𝑅 𝐵𝐴 𝑅 𝐶 ) )
12 9 11 jaoi ( ( 𝐶 = 𝐵𝐵 𝑅 𝐶 ) → ( 𝐴 𝑅 𝐵𝐴 𝑅 𝐶 ) )
13 7 12 syl6bir ( ( 𝐶𝑆𝐵𝑆 ) → ( ¬ 𝐶 𝑅 𝐵 → ( 𝐴 𝑅 𝐵𝐴 𝑅 𝐶 ) ) )
14 13 com3r ( 𝐴 𝑅 𝐵 → ( ( 𝐶𝑆𝐵𝑆 ) → ( ¬ 𝐶 𝑅 𝐵𝐴 𝑅 𝐶 ) ) )
15 4 14 mpan2d ( 𝐴 𝑅 𝐵 → ( 𝐶𝑆 → ( ¬ 𝐶 𝑅 𝐵𝐴 𝑅 𝐶 ) ) )
16 15 3imp21 ( ( 𝐶𝑆𝐴 𝑅 𝐵 ∧ ¬ 𝐶 𝑅 𝐵 ) → 𝐴 𝑅 𝐶 )