Metamath Proof Explorer


Theorem sotrieq2

Description: Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999)

Ref Expression
Assertion sotrieq2 ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ( ¬ 𝐵 𝑅 𝐶 ∧ ¬ 𝐶 𝑅 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sotrieq ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐵 ) ) )
2 ioran ( ¬ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐵 ) ↔ ( ¬ 𝐵 𝑅 𝐶 ∧ ¬ 𝐶 𝑅 𝐵 ) )
3 1 2 bitrdi ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ( ¬ 𝐵 𝑅 𝐶 ∧ ¬ 𝐶 𝑅 𝐵 ) ) )