Description: Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | sotrieq2 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ( ¬ 𝐵 𝑅 𝐶 ∧ ¬ 𝐶 𝑅 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotrieq | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) | |
2 | ioran | ⊢ ( ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ↔ ( ¬ 𝐵 𝑅 𝐶 ∧ ¬ 𝐶 𝑅 𝐵 ) ) | |
3 | 1 2 | bitrdi | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ( ¬ 𝐵 𝑅 𝐶 ∧ ¬ 𝐶 𝑅 𝐵 ) ) ) |