Step |
Hyp |
Ref |
Expression |
1 |
|
soxp.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } |
2 |
|
sopo |
⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) |
3 |
|
sopo |
⊢ ( 𝑆 Or 𝐵 → 𝑆 Po 𝐵 ) |
4 |
1
|
poxp |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → 𝑇 Po ( 𝐴 × 𝐵 ) ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Po ( 𝐴 × 𝐵 ) ) |
6 |
|
elxp |
⊢ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) |
7 |
|
elxp |
⊢ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) |
8 |
|
ioran |
⊢ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ↔ ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) |
9 |
|
ioran |
⊢ ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) |
10 |
|
ianor |
⊢ ( ¬ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) |
11 |
10
|
anbi2i |
⊢ ( ( ¬ 𝑎 𝑅 𝑐 ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ) |
12 |
9 11
|
bitri |
⊢ ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ) |
13 |
|
ianor |
⊢ ( ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) |
14 |
12 13
|
anbi12i |
⊢ ( ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ↔ ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) ) |
15 |
8 14
|
bitri |
⊢ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ↔ ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) ) |
16 |
|
solin |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) |
17 |
|
3orass |
⊢ ( ( 𝑎 𝑅 𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ↔ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) |
18 |
|
df-or |
⊢ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 → ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) |
19 |
17 18
|
bitri |
⊢ ( ( 𝑎 𝑅 𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ↔ ( ¬ 𝑎 𝑅 𝑐 → ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) |
20 |
16 19
|
sylib |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( ¬ 𝑎 𝑅 𝑐 → ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) |
21 |
|
solin |
⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑏 𝑆 𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) |
22 |
|
3orass |
⊢ ( ( 𝑏 𝑆 𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ↔ ( 𝑏 𝑆 𝑑 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) |
23 |
|
df-or |
⊢ ( ( 𝑏 𝑆 𝑑 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ↔ ( ¬ 𝑏 𝑆 𝑑 → ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) |
24 |
22 23
|
bitri |
⊢ ( ( 𝑏 𝑆 𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ↔ ( ¬ 𝑏 𝑆 𝑑 → ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) |
25 |
21 24
|
sylib |
⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ¬ 𝑏 𝑆 𝑑 → ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) |
26 |
25
|
orim2d |
⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) → ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) ) |
27 |
20 26
|
im2anan9 |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) → ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) ) ) |
28 |
|
pm2.53 |
⊢ ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) → ( ¬ 𝑎 = 𝑐 → 𝑐 𝑅 𝑎 ) ) |
29 |
|
orc |
⊢ ( 𝑐 𝑅 𝑎 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) |
30 |
28 29
|
syl6 |
⊢ ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) → ( ¬ 𝑎 = 𝑐 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ¬ 𝑎 = 𝑐 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
32 |
|
orel1 |
⊢ ( ¬ 𝑏 = 𝑑 → ( ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) → 𝑑 𝑆 𝑏 ) ) |
33 |
32
|
orim2d |
⊢ ( ¬ 𝑏 = 𝑑 → ( ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) → ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) ) |
34 |
33
|
anim2d |
⊢ ( ¬ 𝑏 = 𝑑 → ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) ) ) |
35 |
|
imor |
⊢ ( ( 𝑎 = 𝑐 → 𝑑 𝑆 𝑏 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) |
36 |
35
|
biimpri |
⊢ ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑎 = 𝑐 → 𝑑 𝑆 𝑏 ) ) |
37 |
36
|
com12 |
⊢ ( 𝑎 = 𝑐 → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → 𝑑 𝑆 𝑏 ) ) |
38 |
|
equcomi |
⊢ ( 𝑎 = 𝑐 → 𝑐 = 𝑎 ) |
39 |
38
|
anim1i |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑑 𝑆 𝑏 ) → ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) |
40 |
39
|
olcd |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) |
41 |
40
|
ex |
⊢ ( 𝑎 = 𝑐 → ( 𝑑 𝑆 𝑏 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
42 |
37 41
|
syld |
⊢ ( 𝑎 = 𝑐 → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
43 |
29
|
a1d |
⊢ ( 𝑐 𝑅 𝑎 → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
44 |
42 43
|
jaoi |
⊢ ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
45 |
44
|
imp |
⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) |
46 |
34 45
|
syl6com |
⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ¬ 𝑏 = 𝑑 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
47 |
31 46
|
jaod |
⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
48 |
27 47
|
syl6 |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) → ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
49 |
48
|
impd |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
50 |
15 49
|
syl5bi |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
51 |
|
df-3or |
⊢ ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ↔ ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
52 |
|
df-or |
⊢ ( ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ↔ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
53 |
51 52
|
bitri |
⊢ ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ↔ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
54 |
50 53
|
sylibr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
55 |
|
pm3.2 |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) ) |
56 |
55
|
ad2ant2l |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) ) |
57 |
|
idd |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) |
58 |
|
simpr |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) |
59 |
58
|
ancomd |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ) |
60 |
|
simpr |
⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) |
61 |
60
|
ancomd |
⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) |
62 |
|
pm3.2 |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) → ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
63 |
59 61 62
|
syl2an |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) → ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
64 |
56 57 63
|
3orim123d |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
65 |
54 64
|
mpd |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
66 |
65
|
an4s |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
67 |
66
|
expcom |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
68 |
67
|
an4s |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
69 |
|
breq12 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ) ) |
70 |
|
eqeq12 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 = 𝑢 ↔ 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ) ) |
71 |
|
breq12 |
⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑡 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑢 𝑇 𝑡 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
72 |
71
|
ancoms |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑢 𝑇 𝑡 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
73 |
69 70 72
|
3orbi123d |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ↔ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
74 |
1
|
xporderlem |
⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) |
75 |
|
vex |
⊢ 𝑎 ∈ V |
76 |
|
vex |
⊢ 𝑏 ∈ V |
77 |
75 76
|
opth |
⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ↔ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) |
78 |
1
|
xporderlem |
⊢ ( 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
79 |
74 77 78
|
3orbi123i |
⊢ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
80 |
73 79
|
bitrdi |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
81 |
80
|
biimprcd |
⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
82 |
68 81
|
syl6 |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
83 |
82
|
com3r |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
84 |
83
|
imp |
⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
85 |
84
|
an4s |
⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
86 |
85
|
expcom |
⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
87 |
86
|
exlimivv |
⊢ ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
88 |
87
|
com12 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
89 |
88
|
exlimivv |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
90 |
89
|
imp |
⊢ ( ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
91 |
6 7 90
|
syl2anb |
⊢ ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
92 |
91
|
com12 |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
93 |
92
|
ralrimivv |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) |
94 |
|
df-so |
⊢ ( 𝑇 Or ( 𝐴 × 𝐵 ) ↔ ( 𝑇 Po ( 𝐴 × 𝐵 ) ∧ ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
95 |
5 93 94
|
sylanbrc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) ) |