| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h0elsh |
⊢ 0ℋ ∈ Sℋ |
| 2 |
1
|
shssii |
⊢ 0ℋ ⊆ ℋ |
| 3 |
|
0ss |
⊢ ∅ ⊆ 0ℋ |
| 4 |
|
spanss |
⊢ ( ( 0ℋ ⊆ ℋ ∧ ∅ ⊆ 0ℋ ) → ( span ‘ ∅ ) ⊆ ( span ‘ 0ℋ ) ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( span ‘ ∅ ) ⊆ ( span ‘ 0ℋ ) |
| 6 |
|
spanid |
⊢ ( 0ℋ ∈ Sℋ → ( span ‘ 0ℋ ) = 0ℋ ) |
| 7 |
1 6
|
ax-mp |
⊢ ( span ‘ 0ℋ ) = 0ℋ |
| 8 |
5 7
|
sseqtri |
⊢ ( span ‘ ∅ ) ⊆ 0ℋ |
| 9 |
|
0ss |
⊢ ∅ ⊆ ℋ |
| 10 |
|
spancl |
⊢ ( ∅ ⊆ ℋ → ( span ‘ ∅ ) ∈ Sℋ ) |
| 11 |
9 10
|
ax-mp |
⊢ ( span ‘ ∅ ) ∈ Sℋ |
| 12 |
|
sh0le |
⊢ ( ( span ‘ ∅ ) ∈ Sℋ → 0ℋ ⊆ ( span ‘ ∅ ) ) |
| 13 |
11 12
|
ax-mp |
⊢ 0ℋ ⊆ ( span ‘ ∅ ) |
| 14 |
8 13
|
eqssi |
⊢ ( span ‘ ∅ ) = 0ℋ |