| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spanval | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ 𝐴 )  =  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 } )  | 
						
						
							| 2 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ⊆   Sℋ   | 
						
						
							| 3 | 
							
								
							 | 
							helsh | 
							⊢  ℋ  ∈   Sℋ   | 
						
						
							| 4 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑥  =   ℋ  →  ( 𝐴  ⊆  𝑥  ↔  𝐴  ⊆   ℋ ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rspcev | 
							⊢ ( (  ℋ  ∈   Sℋ   ∧  𝐴  ⊆   ℋ )  →  ∃ 𝑥  ∈   Sℋ  𝐴  ⊆  𝑥 )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							mpan | 
							⊢ ( 𝐴  ⊆   ℋ  →  ∃ 𝑥  ∈   Sℋ  𝐴  ⊆  𝑥 )  | 
						
						
							| 7 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ≠  ∅  ↔  ∃ 𝑥  ∈   Sℋ  𝐴  ⊆  𝑥 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							⊢ ( 𝐴  ⊆   ℋ  →  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ≠  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							shintcl | 
							⊢ ( ( { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ⊆   Sℋ   ∧  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ≠  ∅ )  →  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ∈   Sℋ  )  | 
						
						
							| 10 | 
							
								2 8 9
							 | 
							sylancr | 
							⊢ ( 𝐴  ⊆   ℋ  →  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ∈   Sℋ  )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							eqeltrd | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ 𝐴 )  ∈   Sℋ  )  |