Metamath Proof Explorer


Theorem spancl

Description: The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spancl ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ∈ S )

Proof

Step Hyp Ref Expression
1 spanval ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = { 𝑥S𝐴𝑥 } )
2 ssrab2 { 𝑥S𝐴𝑥 } ⊆ S
3 helsh ℋ ∈ S
4 sseq2 ( 𝑥 = ℋ → ( 𝐴𝑥𝐴 ⊆ ℋ ) )
5 4 rspcev ( ( ℋ ∈ S𝐴 ⊆ ℋ ) → ∃ 𝑥S 𝐴𝑥 )
6 3 5 mpan ( 𝐴 ⊆ ℋ → ∃ 𝑥S 𝐴𝑥 )
7 rabn0 ( { 𝑥S𝐴𝑥 } ≠ ∅ ↔ ∃ 𝑥S 𝐴𝑥 )
8 6 7 sylibr ( 𝐴 ⊆ ℋ → { 𝑥S𝐴𝑥 } ≠ ∅ )
9 shintcl ( ( { 𝑥S𝐴𝑥 } ⊆ S ∧ { 𝑥S𝐴𝑥 } ≠ ∅ ) → { 𝑥S𝐴𝑥 } ∈ S )
10 2 8 9 sylancr ( 𝐴 ⊆ ℋ → { 𝑥S𝐴𝑥 } ∈ S )
11 1 10 eqeltrd ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ∈ S )